Introduction and Tutorial

fthLUG
24.03.2011

Why Distributed?

No single point of failure

Automatic backups

Fast local operations (log, diff, checkout, ...)
Authenticity of commits

Easy branching and powerful merging

Lower barrier for contributors

History Representation

= Commits form a “directed acyclic graph” (DAG)

= Al

lows precise selection of commits to be merged

= C

nanges cannot be accidentally merged again

Heferencs documentation for the core git commands.
Merge of httpfmembers.cox.netjunkio/git-c.git
Qctopus merge of the following five patches.
Update diff engine for symlinks stored in th
diff-cache shows differences for unmerged
Do not write out new index if nothing has ¢
Make git-prune-script exscutable again.
Update git-apply-patch-script for symbolic links,
[FATCH] create subdirs for symlinks

Be more carsful about tree entry modes.

Fix git-resolve-script,
Fix symlink handling
[PATCH] git: Mention the '-p' option in the usage help

Why Git?

Because I like it ;)

Used by the Linux kernel

Combines speed and feature richness
Why not?

“Complicated interface”

Inability to track empty directories

Necessity of repacking the object database

Projects managed with Git

Git (obviously)

Linux Kernel (the reason behind Git’s existence)
GNOME

PhpMyAdmin

X.Org

VLC

Wine

Git mirrors: Rockbox, Redmine, Django

Tutorial

= Local:

= Installation & setup
= Creating a repository
= Staging and committing changes
= Ignoring files
= Branching & merging
= Remote:

= Clone

= Push & pull

Install & Setup

= Install Git (v1.7.4.1) # apt-get install git
glitk
* Set author and S git config --global

committer info user.name 'Daniel
Knittl-Frank'

= Enable colored output | |
S git config --global

user.email

'S1010454016@students
.fh-hagenberg.at'

S git config --global
color.ul true

Creating a Repository

= You start working on a
project

= After a while you need
version control

S 1s
docs/ 1lib/ src/

S git init

S git add

S git commit
-m'initial commit'

[master (root—-commit)
3fd0flb] initial

Staging & Committing Changes

= Git works with
changes (at the
interface level)

= Changes in files have
to be staged

= 'git add -p' allows to
stage separate
changes

= 'git reset' to
¢ bl
unstage’ changes

S vim src/Makefile
S git add src/Makefile

$ git commit

-m'makefile magic'
[master 9bblebo6] makefile
magic

1 files changed, 100
insertions(+), O
deletions (-)

create mode 100644
src/Makefile

Ignoring files

= You don’t want all files 5 >.gitignore cat

* ~
to be versioned " swp

./build
config.xml
D

= Temporary files

= Build products

= Configuration > git add .gitignore

S git commit
-m'adding
.gitignore'

= Does not work for
already tracked files

= Temporarily ‘hide’
changes

= Handy for urgent
bugfixes

= You will love this
feature

Stash

S git stash save
Saved working directory
and 1ndex state WIP on
master: 6cb28aa Merge

branch 'BR'
HEAD is now at 6cb528aa

Merge branch 'B'
S # fix a bug

S glit stash pop
Dropped refs/stash@{0}
(£8559222cfd8ec100554£90061
244b5d011coe824)

= Permanently assign a
name to a commit
and its history

= Tags can be signed
with PGP/GPG

Tag

S
S

git tag vO0.1

glt tag -s -m'this
1s a signed tag'
v0.2

git tag -v v0.2
object 6c¢c528aallb267c2edf...
type commit

tag v0.2

tagger Daniel ..

this 1s a signed tag
gpg: Signature made Sun 20

Mar 2011 ..
gpg: Good signature from .

Branch

= Different lines of
development

= Feature branches

= Custom configuration

S git branch A

S git checkout A
Switched to branch 'A'

S git checkout -b B
Switched to a new branch
lBl

S git branch
A
* B
master

Merge

0 Changes in branches S # new commits on both

‘master’” and ‘B’
need to be synced
S git checkout master

= ‘Real’ merges are
g. . $ git merge B
recorded in hlStOI’Y Merge made by recursive.

= When one branch is
fully contained in the
other, a ‘fast-forward
merge’ is performed

Clone

= First thing to do when

working on a foreign

project

= Retrieves complete
history of a project

$ git clone

git://git.kernel.orqg/
pub/scm/git/

glt.git my-git

Cloning into my-git
Remote: Counting objects:
110550, done.

cd my—-git
git branch -a

* master
origin/HEAD -> origin/master

Pull

= Fetch all new commits * 91t pull
and then merges
upstream branch of S git pull origin

current branch master

S git fetch origin
= 'git fetch' does the J

same thing without
merging

Creating a Mirror

= Special ‘bare’
repositories are
necessary for push
operations

= It's basically a .git
directory without its
working tree

= Local repositories need
to be told about the
mirror or cloned
from it

S ssh://knittlQ..

S git init --bare
mirror.git

S logout

S git remote add mirror
ssh://knittl@../mirror
.git

S # or create a new clone

S git clone
ssh://knittl@../mirror
.glt mirror

Push

= Pushes local changes $ git push
to the specitied $ git push origin
master

remote repository
S git push
ssh://knittl@../mirror
.glt branchA branchB

Specifying Commits

= Git provides a special
syntax to name
commits and commit
ranges

$ git log
branchA...branchB~5

S git format-patch
origin/master..master

$ git diff
origin/next”""2"

S git show ':/fix nasty
bug'

Browsing History

= Several ways to § gLtk —-all
browse/visualize $ tig
hiStOI‘y S git log —--oneline
——decorate —--graph

= Commit ranges may be
specified

Rebase

Take a line of hiStOI‘y S # 10 last commits to
. master
and move it on top
of another commit s git rebase --onto

master featureA~10

Potentially dangerous featureA
operatkn1 S # current branch to
master

Rewrites (as in creates

. S git rebase master
new) history

Cherry-pick: similar
concept, but for
single commits

Finding Errors: Bisect

= Often we want to
know when a certain
breakage (bug,
regression) was
introduced

= Bisect allows to search
commits In
logarithmic time (10
steps for 1000
commits)

$ git bisect HEAD v1.5
Bisecting: 675
revisions left to
test after this

S # run your tests and
mark as good or bad

S git bisect (bad]|good)
S # 0 good, <127 bad:

S git bisect run
unit test.sh

Other Distributed Systems (FOSS)

Mercurial — Direct competitor of Git
Bazaar — Developed by Canonical (Ubuntu)
Fossil — Integrated wiki and bug-tracker
Monotone — PGP-Keys for authenticity
Darcs — Algebra of patches

More Interesting Stuff

Git website: http://git-scm.com/

Google tech talk by Linus Torvalds:
http://youtube.com/watch?v=4XpnKHJAok8

Pro-Git book: http://progit.org/

Many many more ...

http://git-scm.com/
http://www.youtube.com/watch?v=4XpnKHJAok8
http://progit.org/

Questions?

Comments?
Pub!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

