
Emacs Reference

Fred Morcos

1 / 37

Description and History

I Emacs is an extensible, customizable, self-documenting, real-time
display text editor.

I Originally, a set of editing macros for the TECO editor.

I GNU Emacs was developed by R. Stallman and G. Steele.

I Technically, GNU Emacs is an elisp interpreter with text editing
extensions.

I GNU Emacs contains thousands of commands and allows the user
to combine them into elisp procedures (called macros) to
automate work.

I Commands are, themselves, elisp procedures and the GNU
Emacs configuration init file is an elisp program.

2 / 37

Technical Description

Extensible

The user can define, undefine and redefine commands as well as
re-use available commands into macros.

Customizable

The user can change properties of emacs elements including the
key-bindings and the display.

Self-documenting

All defined commands and macros get automatic preliminary
documentation (bound keys and parameters).

3 / 37

Why Emacs?

I Easily programmable

I Kill ring

I Rectangular editing

I Registers

I Command repetition

I Macros and Lisp procedures

I Modes

I Init file

I Remote files

...

I Shell, Terminal Emulator, IRC, Email, News, File Manager,
Process Manager, Project Manager, Tetris, Doctor, ...

4 / 37

Terminology & Structure

I Buffer a container for data (text, completions, ...)

I Point the current position in the buffer (cursor)

I Window a visual container for a buffer

I Frame a visual container for one or more windows

I Kill the equivalent of cutting

I Yank the equivalent of copying

I Kill Ring a circular clipboard (very handy)

I Mark the coordinates of a selection

I Region the text inside a mark

I Modeline a status line

I Minibuffer a small buffer for commands and arguments

I Mode the current type of data being edited

5 / 37

Modeline

The Modeline is used to report different pieces of information.

-cs:ch-fr buf pos line (major minor)------

I cs character set (or coding system)

I : newline mode

I ch file modification status

I - or @ file is local or remote

I fr frame name on text terminals

I buf buffer/file name

I pos point/cursor position

I line current line and column number

I modes currently loaded major and minor modes

6 / 37

Keybind Terms & Minibuffer

Emacs has some different naming of command/control keys (coming
from the old days).

I M Meta key, Alt or ESC

I C Control key

I S Shift key

I M-a press a while holding the meta key

I C-M-a press a while holding the control and meta keys

I C-a b press a while holding the control key then press b

I C-a C-b press a and b both while holding the control key

I C-a M-b press a with control then b with meta

The Minibuffer is used to input commands, arguments and setting
different modes (which some of are bound to keys or menu actions).

I M-x execute a command by name

7 / 37

Basic Usage

Loading

I $ emacs opens at the scratch buffer

I $ emacs [file1] [file2] ... opens in split-window mode

I C-x C-f <filename> loads a new buffer from filename

Saving

I C-x C-s saves the current buffer

I C-x C-w <filename> saves the current buffer as filename

Other

I C-x C-c quits emacs

I C-g C-g cancels key-sequence

8 / 37

Windows

Windows are used to display buffer contents. Windows can be split and
resized inside an Emacs frame. The minibuffer has its own window.

I C-x 2 open a window vertically

I C-x 3 open a window horizontally

I C-x 0 close the current window

I C-x 1 close all other windows

I ESC ESC ESC close all other windows

I C-x o move to another window

I C-x ˆ increase window size vertically

I C-x } increase window size horizontally

I C-x { decrease window size horizontally

I C-x − shrink window to buffer size

I C-x + make all windows equal in size

9 / 37

Navigation & Movement

Word

I C-� moves one word backwards

I C-� moves one word forward

Line

I C-a goes to beginning of the line (Home)

I C-e goes to end of the line (End)

I M-a goes to beginning of the sentence

I M-e goes to end of the sentence

I M-g g goes to given line by number

10 / 37

Navigation, Movement & co. [contd.]

Paragraph

I C-� moves up one paragraph

I C-� moves down one paragraph

Buffer

I C-x [moves to the beginning of the buffer

I C-x] moves to the end of the buffer

I C-l moves the buffer to position point

I C-x b switches to another buffer by name

I C-x �� switches to previous or next buffer

I C-x k kills the current buffer

11 / 37

Editing
Character

I C-d deletes next character

I C-t transposes current character with previous one

I C-q TAB inserts a TAB verbatim

Word

I M-d kills the next word

I M- - M-d kills to the previous word

I M-/ expands current word

I M-/ SPC M-/ expands current word and grabs next one

I M-C-/ completes current word

I M-t transposes current word with next one

I M- - M-t transposes current word with previous one

I M-c capitalizes next word

I M- - M-c capitalizes previous word

12 / 37

Editing [contd.]
Word [contd.]

I M-l lowercase next word

I M- - M-l lowercase previous word

I M-u uppercase next word

I M- - M-u uppercase previous word

Line

I M-o M-s center a line

I C-S-BACKSPC kills current line

I C-k kills from point to EOL

I M- - C-k kills to the previous line

I C-a C-k goes to BOL then kills to EOL

I TAB indents line depending on current mode

I C-o breaks line before/after point

I C-x C-t transpose current line with previous one

I M-0 C-x C-t transpose current line with one at mark

I delete-matching-lines delete lines matching a regexp

13 / 37

Prefix Arguments & Command Repetition

Passing numerical arguments to commands can alter their behavior
(e.g., repetition or inversion). Passing an argument can be done before
M-x or key bindings.

I M-n com run com with prefix arg n

I M- - com run com with negative prefix arg

I C-u n com run com with prefix arg n

I C-u com run com with prefix arg 4

I C-u C-u com run com with prefix arg 8

I C-u also terminates the prefix argument

I C-x [z]+ repeats the previous z th command with args

I C-x ESC ESC repeats last command that uses the minibuffer

Examples:

I C-u 5 0 C-k will kill 50 lines
I C-u 5 C-u 0 will insert 5 zeros

14 / 37

Search & Replace
Incremental search

I C-s <keyword> search forward

I C-r <keyword> search backward

Non-incremental search

I C-s RET <keyword> search forward

I C-r RET <keyword> search backward

Regular Expression Search

I C-M-s <expression> search regexp forward

I C-M-r <expression> search regexp backward

Notes:
I ESC will cancel and go to original point. RET will end at the current point.

I Searches are case-insensitive unless an uppercase letter is found in the search string.

I While searching, C-w will increment the search term with the current word.

15 / 37

Search & Replace [contd.]

Unconditional Replace

I replace-string replaces a string with another

I replace-regexp replaces a regexp match with a string

Query Replace (Conditional Replace)

I M-% conditional replace of a string

I query-replace-regexp conditional replace of a regexp

Notes:

I Replaces are case-insensitive unless an uppercase letter is found in the match string.

I Replaces work from position to end of buffer unless a mark is active.

I After a replace, the position will be at the end of the last match. C-u C-SPC to go
back to the position before the replace started.

I During a query replace, SPC will apply a replace and DEL will skip.

16 / 37

Undo & Redo

In Emacs, there is no special redo function. Instead, there is only an
undo function and redo can be achieved by undo-ing an undo.

I C-/ undo a single change

I C-g break the chain of undos

Notes:

I If a mark is active, undo will only affect the marked region.

17 / 37

Regions
Emacs uses the mark and point to denote a region (i.e., a selection).

I C-SPC ���� creates a region (marks area)

I C-x C-x swaps mark and point in a region

I C-u C-x C-x swaps mark and point without region

I C-x h marks the entire document

I M-h marks the paragraph around

I TAB indents the current region

I M-@ incrementally mark next word

Kill, Yank and Paste Regions

I C-w kills the currently selected region

I M-w copies the currently selected region

I C-y (M-y)* yanks and cycles from the kill ring

Notes:
I Yank is the copy command in vi and the paste command in emacs.

18 / 37

Rectangles

Rectangles are marked regions between the columns of the point and
mark. Applying operations on rectangles is some sort of vertical editing.

I C-x r k kill the rectangle

I C-x r d delete the rectangle

I C-x r y yank the last killed rectangle

I C-x r o push text to fill rectangle with spaces (open)

I C-x r c replace rectangle text with spaces (clear)

I C-x r t replace each line in rectangle with text

19 / 37

Registers

Registers are places where you can store anything: text, position,
rectangle, configuration, filename, ... Registers are named: a, A and 3
are three different registers.

I view-register view the contents of a register

I C-x r SPC r record current point position in register r

I C-x r j r jump to position in register r

I C-x r s r save region to register r

I C-u C-x r s r kill region to register r

I C-x r i r insert text from register r

I append-to-register append region to register

I prepend-to-register prepend region to register

I C-x r r r save rectangle into register r

20 / 37

Bookmarks

Bookmarks are like registers but persistent. They can also be named.

I C-x r m foo bookmark file and point to foo

I C-x r b foo jump to bookmark called foo

I C-x r l list all bookmarks

I bookmark-save save all bookmarks

I bookmark-delete delete a bookmark

21 / 37

Macros
Macros are user defined commands using the Emacs command
language. A user can “record” and “replay” a macro, useful for simple
repeatable tasks. More complex tasks (e.g., conditions, loops) must be
implemented in elisp. Macros are recorded in a macro ring.

I F3 start macro definition or insert counter

I C-x (start macro definition only

I F4 end macro definition or call macro

I C-x e end macro definition and call macro

I C-x) end macro definition only

I C-u C-u F3 append commands to last macro

I C-u F3 re-run last macro then append commands to it

I C-x C-k r run macro on region

I C-x C-k C-n rotate to select the next macro in the ring

I C-x C-k C-p rotate to select the previous macro in the ring

22 / 37

Macros [contd.]

Every macro definition can have a counter to insert into the buffer.

I F3 inside a macro definition, inserts the counter

I C-x C-k C-i outside a macro definition, inserts the counter

I C-x C-k C-c set the macro counter value

I C-x C-k C-f set the macro counter format

Macros can be named and saved.

I C-x C-k n name the most recently defined macro

I C-x C-k b keybind the most recently defined macro

I insert-kbd-macro insert macro into buffer as elisp code

Notes:

I It is best to use the reserved key bindings C-x C-k [a-zA-Z0-9] as to not cause
problems with other bindings. C-x C-k b 4 will define C-x C-k 4 as a binding.

23 / 37

Alignment

Emacs contains alignment commands. Sometimes those depend on the
current mode (i.e., the language).

I align aligns depending on mode

I align-regexp aligns using a regular expression

I C-u align-regexp aligns using a regular expression helper

I align-current aligns current paragraph depending on mode

24 / 37

Sorting

When sorting, prefixing with C-u sorts in descending order.

I sort-lines sort region by lines

I sort-paragraphs sort region by paragraphs

I C-u n sort-fields sort lines in region by nth field

I C-u -n sort-fields sort lines in region by nth field from right

I sort-numeric-fields interpret field as number and not text

I sort-columns sort by column specified by marked region

I reverse-region reverses current region

25 / 37

Tables

Emacs has support for creating and editing text-based tables by
keeping track of their properties (e.g., position, size) in the buffer.
When a buffer is saved to file, those properties are lost.

I table-insert interactively insert a table into buffer

I table-recognize detect properties of all tables in the buffer

I table-unrecognize remove special table properties

I table-recognize-region detect properties of tables in region

I table-unrecognize-region forget properties of tables in region

I table-recognize-table detect properties of table at point

I table-unrecognize-table remove properties of table at point

26 / 37

Tables [contd.]

Cell resizing:

I C-u n C-> widen cell at point by n characters

I C-u n C-< narrow cell at point by n characters

I C-u n C-} heighten cell at point by n lines

I C-u n C-{ shorten cell at point by n lines

Cell movement:

I TAB move to cell on right

I S-TAB move to cell on left

Cell merging/splitting:

I C-c C-c * interactively merge two cells

I C-| split cell horizontally

I C- - split cell vertically

27 / 37

Tables [contd.]

Rows & Columns:

I C-u n table-insert-row insert n rows

I C-u n table-delete-row delete n rows

I C-u n table-insert-column insert n columns

I C-u n table-delete-column delete n columns

Other:

I C-: interactively justify cell, column or row text

I C-! toggle table fixed width mode

I table-generate-source table code in Latex, HTML or Cals

28 / 37

Goodies

I C-x TAB force an indentation on a region

I M-q indents and breaks paragraph into multiple lines

I M-; comments a region or adds comment to line

I M-(inserts a new lisp function (parenthesis)

I M-) checks balanced parenthesis and opens line

I C-x i inserts file contents at point position

I M-! run shell command

I C-u M-! run shell command and insert output

I M-| run shell command on marked region

I C-u M-| run shell command on and replace marked region

29 / 37

Goodies [contd.]

I insert-buffer inserts buffer contents at point position

I copy-to-buffer copy region content to a buffer

I kill-some-buffers interactively kill buffers

I electric-buffer-list interactive buffer list

I toggle-truncate-lines do not split lines over visual lines

I visual-line-mode split lines by words

I viper-mode vi compatibility

30 / 37

Setting Key Bindings
Emacs has a global keymap which maps between keys and commands.
Each major mode can define, redefine or undefine its own key bindings,
creating a local keymap (e.g., c-mode). Each minor mode can do so
too (e.g., flymake). Each portion of text can also do so (e.g., tables).

Description of some prefix keys:

I C-x command prefix key

I M- command prefix key

I C-c mode specific prefix key

I C-h help prefix key

Commands to bind keys:

I global-set-key k com bind key k to com globally

I local-set-key k com bind key k to com locally (major mode)

Notes:
I Menu and mouse key bindings can also be set.

31 / 37

Storing Key Bindings

In the Emacs init file, you can either set global key bindings or “hook”
local key bindings to mode hooks (i.e., callbacks, slots).

I global-set-key adds a binding to the global map

I local-set-key adds a binding to the local (major mode) map

I kbd converts a string to a key sequence

Examples:

Global key binding:

I (global-set-key (kbd "C-c d") ’duplicate-line)

I (global-set-key (kbd "C-c d") (kbd "C-a C-@ C-e M-w RET C-y"))

I (global-set-key (kbd "C-c d") "\C-a\C- \C-n\M-w\C-y")

Local key binding:

I (add-hook ’LaTeX-mode-hook

(lambda () (local-set-key (kbd "C-c n")

’forward-paragraph)))

32 / 37

The Emacs Help System
Emacs has a handy help system for quick lookup of various features,
topics, functions and key bindings.

I C-h ? show the help system shortcuts

I C-h key run help system with shortcut key

Some useful help keys:

I C-h a show apropos page about a keyword

I C-h k keybind show help for function bound to keybind

I C-h b show all key bindings

I C-h f show documentation for function

I C-h m show documentation for current modes

I C-h v show documentation for variable

I C-h w show what keys a command is bound to

I C-h t start the emacs tutorial

I prefix C-h show all key binds starting with prefix

33 / 37

Modes

Modes are used to define the types of data being edited in buffers, or
what Emacs calls “the language”.

Every buffer has exactly one major mode which defines its language (C,
Java, English, IRC, ...) and provides basic elements like syntax
highlighting and (re)defines functions and their key bindings for
relevant actions (e.g., comments).

Each buffer can have zero or more minor modes enabled which provide
non-specific functionality such as spell checking or line wrapping (i.e.,
mode independent).

34 / 37

ediff

ediff (emacs-diff) is a mode for Emacs where you can view and
merge difference between two or three buffers.

I ediff select files to view their differences

I ediff-buffers select buffers to view their differences

In ediff-mode:

I | switch between horizontal/vertical view

I ? view ediff help

I p view previous difference

I n view next difference

I a set buffer b’s area to what’s in a’s

I b set buffer a’s area to what’s in b’s

I q quit ediff session

35 / 37

Spell Checking

I M-$ check spelling at word or active region

I ispell check active region or entire buffer

I i accept word and insert into personal dictionary
I ? show ispell help
I RET end current ispell session

I ESC TAB complete current word from dictionary

I flyspell-mode enable “on the fly” spell checking

I flyspell-prog-mode spell check comments and strings

36 / 37

References

I Emacs Wiki: http://emacswiki.org/

I Emacs Docs: https://www.gnu.org/software/emacs/
manual/html_node/emacs/index.html

I Emacs Help

37 / 37

http://emacswiki.org/
https://www.gnu.org/software/emacs/manual/html_node/emacs/index.html
https://www.gnu.org/software/emacs/manual/html_node/emacs/index.html

