
Fachhochschul-Bachelorstudiengang

SOFTWARE ENGINEERING
A-4232 Hagenberg, Austria

Analysis and Comparison of Distributed
Version Control Systems

Bachelorarbeit
Teil 1

zur Erlangung des akademischen Grades
Bachelor of Science in Engineering

Eingereicht von

Daniel Knittl-Frank

Begutachter: DI Dr. Stefan Wagner

Hagenberg, Juni 2010

Contents

Abstract iii

Kurzfassung iv

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 2
1.3 Content . 2

2 Version Control in General 3
2.1 Workflows . 4
2.2 Foundations . 5

2.2.1 Glossary . 5
2.2.2 Repository . 6
2.2.3 Working Directory . 7
2.2.4 Diff and Patch . 7
2.2.5 Merge . 9
2.2.6 Mainline, Branches and Tags 12

3 Centralized Version Control 14
3.1 Tools . 14

3.1.1 CVS . 14
3.1.2 Subversion . 15

4 Distributed Version Control 17
4.1 Differences . 17
4.2 Concepts . 19

4.2.1 Revision identifiers . 20
4.2.2 Integrity . 20
4.2.3 History representation 21

4.3 Tools . 21
4.3.1 Bazaar . 22
4.3.2 Git . 27
4.3.3 Mercurial . 32

i

Contents ii

5 Comparison 38
5.1 Testing Scenario . 38
5.2 Results . 38

6 Conclusion 46

Abstract

Version and configuration control systems have played an essential role in
software development for the last decades. Starting with the new millennium
a new trend surfaced, distributed version control: dedicated central servers
for few authorized users lose importance in favor of a more dynamic workflow,
in which every developer works with a copy of a project’s complete history
and changes are synchronized ad-hoc between developers.

Popular open-source distributed systems will be analyzed and compared
– benchmarks provide a quick glance at performance of the examined sys-
tems. Furthermore differences to traditional, centralized systems, such as
Subversion, will be discussed.

iii

Kurzfassung

Bereits seit mehreren Jahrzehnten wird die Softwareentwicklung durch Versi-
ons- und Konfigurationsverwaltungsprogramme unterstützt. Seit der Jahrtau-
sendwende zeichnet sich verteilte Versionsverwaltung als ein neuer Trend ab.
Jeder Entwickler hat eine vollständige Kopie des Repositorys und Änderungen
an diesen werden mit anderen synchronisiert.

Im Zuge dieser Arbeit werden die gängigsten verteilten Systeme mitein-
ander verglichen und analysiert. Benchmarks in diversen Kategorien sollen
zeigen, wo sich welches System bevorzugt einsetzen lässt. Weiters werden
die Unterschiede zu traditionellen, zentralisierten Systemen wie Subversion
untersucht.

iv

Chapter 1

Introduction

1.1 Motivation

When developing software it is essential to be able to keep track of changes
made to files and store different versions of a project as it evolves over time.
Version control systems provide developers with many features to ease project
development. Each version stores the author who made the change, creation
time and can be provided with a message describing the change.

While RCS1 could be perfectly used by system administrators to version
control configuration files of an operating system, it lacked proper support
for network operation. CVS2 in its beginnings wrapped RCS commands in
scripts which added networking support and enabled multiple users to work
together. Subversion extended CVS to use transactions while committing
and moved from per-file version numbers to project-global numbering.

Distributed version control systems (DVCS) are the next logical step in
the evolution of version control systems. DVCS shifted from a server-client
architecture to a peer-to-peer like system, making it very easy for developers
to work on complex features without distracting others and to fork existing
projects, while still retaining easy synchronization and merging between
copies.

Not having to be connected to a single dedicated central server all the time
cuts down network latency and enables developers to perform almost every
operation locally and to work with the repository anytime and anywhere.
Network access is only needed when synchronizing with other repository
copies.

1Revision Control System
2Concurrent Versions System

1

1. Introduction 2

1.2 Goals

The goal of this thesis is to provide both, an overview of distributed version
control systems and an in-depth analysis of three open source projects.
Implementation differences and their effects on runtime and disk usage are
examined and highlighted.

Possible parallels and differences with centralized version control systems
are pointed out and their implications are explained.

The reader will be introduced to different workflow models which are
necessary when working with a distributed version control system.

Benchmarks of the latest available versions will support the performance
conclusion drawn from the analysis of each system.

1.3 Content

In the next chapter the author will introduce the reader to version control in
general, explain important terms used across different version control systems
and give an overview of different workflows and branching models. Different
patch formats are presented and merge strategies are discussed.

Several older and popular centralized systems, including CVS and Sub-
version, are highlighted in chapter 3 (Centralized Version Control) to give
a historic background and to show existing solutions which are still widely
used in corporate environments or open source projects.

Chapter 4 (Distributed Version Control) is dedicated to distributed
version control systems. Differences to the central server-client architecture
are highlighted and new workflows are presented. Three open-source systems
are analysed in detail and their internal data structures, key features and
user interface are described.

After these theoretical chapters the author will benchmark distributed
systems in chapter 5 (Comparison) to show advantages and disadvantages in
performance for common, daily used operations. Scalability of commands is
important, the benchmarks will measure runtime depending on a number of
factors and their effects on the result.

Chapter 2

Version control in general

According to [Vesperman, 2003, Section 1.1 What Is a Versioning System]
version control, also known as revision control, “is the process of recording
and retrieving changes in a project”, where as [Pilato et al., 2004] describe
version control as a time machine which enables users to recover old versions
through recorded changes made to files and directories.

[Vesperman, 2003, Section 1.1 What Is a Versioning System] lists the
benefits and key features of a version control system:

� Any stored revision of a file can be retrieved to be viewed or changed.

� The differences between any two revisions can be displayed.

� Patches can be created automatically.

� Multiple developers can work simultaneously on the same project or
file without loss of data.

� The project can be branched to allow simultaneous development along
varied tracks. These branches can be merged back into the main line
of development.

� Distributed development is supported across large or small networks.

The user of such a system stores his files in a central place, the repository.
In the simplest form the repository stores every single version of the file, very
much like saving the file under a different name each time with a time stamp
or version number as part of the filename. This central place can be on a
server, on the same computer, or even in the same directory as the file being
edited.

A user has to checkout a file to start working on a local copy of it. After
a user has edited a file, he informs the version control system about it. This
operation is called a checkin or commit. The version control system copies a
snapshot of the current file and adds it as a new version to its repository.

3

2. Version Control in General 4

Usually multiple users want to work on the same project or same file
simultaneously, so version control systems must provide a mechanism to
prevent users from accidentally overwriting changes or blocking others.

2.1 Workflows

Two common methods how version control systems handle changes by differ-
ent users on the same file are described in [Pilato et al., 2004, The Problem
of File Sharing], namelyLock-Modify-Unlock and Copy-Modify-Merge.

� Lock-Modify-Unlock: Whenever a person wants to edit a file, the
file has to be locked beforehand. After the changes are applied and the
updated file is checked into the repository again, the lock on the file is
released.

In practice this model poses problems on the project’s workflow. Work
on the same file by different users is serialized and it is only possible for
a single user to work on a file, however changes often occur in multiple
files at a time.

If a user locks a file and forgets to unlock it, other users are prevented
from locking and changing that file. Tools often require an administrator
to break the lock – which in turn causes problems for the user who
locked the file in the first place.

A Lock-Modify-Unlock workflow is desired for files which are hard
or impossible to merge, such as binary files. It is not available in
distributed version control systems, because there is no single global
repository which could manage locks of files.

� Copy-Modify-Merge: Most of the time users want to modify the
same set of files, but different parts in each file. With the Copy-Modify-
Merge workflow every user has a personal copy of the project files,
called a working copy. When a user tries to upload a file which is
out-of-date (i. e. someone else modified the same file and uploaded it
to the server) the user is forced to merge his changes with the other
changes.

In practice these merges can be done automatically by the version
control system itself, but if the changes overlap, user interaction is
required. Conflicts are marked in the file in question and the user has
to decide, if he wants to keep his changes, keep the modified version
from the server or rewrite the changes altogether.

Version control systems can apply these changes using a three-way-
merge, using the initially checked out version (base/original) as merge
base, while repository changes (upstream) and local modifications are
the left and right side of the merge.

2. Version Control in General 5

Distributed version control systems use a model which is best described
as ‘Copy-Modify-Commit-Merge ’; users commit locally and then merge these
commits with upstream.

2.2 Foundations

This section describes the foundations shared between different version
control systems and explains terms commonly used. The terms are used by
centralized version control systems as well as in distributed version control.

2.2.1 Glossary

� Commit: A commit, revision, version or changeset means a defined
state of a project or file. Many systems use their own proper terms.
Commit is also often used as a verb.

� Checkout: To load a particular version of a project or file to your
hard disk, it needs to be checked out. In Subversion this term is also
used to describe the working directory.

� Repository: The database where the history of a project is stored is
called repository.

� Branch: A branch is a diverging parallel line of development. Many
systems use a special name to denote the default branch in which
development happens.

� Clone: To obtain a copy of a repository, it is cloned (only used in
context of distributed version control systems). A clone is an implicit
branch.

� Merge: To bring two branches back together, they need to be merged.
Merging incorporates all changes in one branch into the other branch.
This often creates a new commit (the merge commit).

� Working directory: The working directory – also working tree, work-
ing copy, sandbox, checkout – is the place where actual development
happens.

� Parent: The commit on which a new commit is based. Merge commits
have multiple parents.

� Diff: The difference between to files or versions of a project.

� Patch: A file describing the difference between files.

2. Version Control in General 6

2.2.2 Repository

The repository or database stores the complete history of a project. In
centralized version control the repository is hosted on a server and every
developer interacts with the same repository. In distributed version control
every developer keeps a separate copy of the repository.

Storage models

There are different ways to store versions of a file, which will be explained in
this section.

� Snapshot based: In snapshot based storage each version of a file
is stored as a complete snapshot, independent of older versions of it.
To save space files are usually compressed using simple run length
encoding. Access time for a single version of a file is asymptotically
constant, in other words does not depend on history length, number of
branches, repository size, etc.

Git and Bazaar use a storage format based on the snapshot model.

� Delta based: Delta based storage only stores the difference between
two versions of a file. Based on the idea that files do not change
significantly between two subsequent versions, this cuts down the space
needed for storage. The time to construct a version of a file depends
on the number of changes to that file.

Forward deltas store changes that must be applied to an earlier version
to get the next version. Reverse deltas store a full copy of the most
recent version and build older versions by applying changes in reverse
order. This often improves performance, because the last version is
accessed more often than older versions.

Skip deltas calculate the difference to other versions than the previous,
to either produce smaller deltas between files or to minimize the number
of changes needed to reconstruct a file. Skip deltas in Subversion provide
access times to any version of a file, which grow logarithmically with
the number of revisions of that file.

Mercurial, CVS and Subversion store history as deltas.

� Weaves: All versions of a file are stored interleaved in a single file,
in which metadata is attached to each block (usually lines) describing
the revisions which this block is part of. Any version can therefore
be extracted with one sequential read over the whole storage file.
Extracting a version of a file gets slower as the number of unique lines
in the history of the file grows. Weave storage requires rewriting the
storage file every time a new version is added.

2. Version Control in General 7

Older versions of Bazaar used a weave based storage format.

2.2.3 Working Directory

The working directory or working copy, which is distinct to each developer, is
the private copy of the files from the repository. Additional metadata is often
stored in the working directory, e. g. to track the latest checked out version
of files or to prepare commits. Most distributed version control systems store
the developer’s copy of the repository inside the working directory.

2.2.4 Diff and Patch

In software development it is essential to tell the differences between two
versions of files. The differences are expressed in the diff format, which shows
all lines which have changed from one version to another.

The program diff reports differences between two files, expressed as
a minimal list of line changes to bring one file into agreement with the
other [Hunt and McIlroy, 1976]. A group of contiguous differing lines is called
a hunk1.

The difference (and representation in diff format) between two files
is computed by the diff algorithm. The input to diff are two sequences
(usually lines), from which the longest common subsequence is determined,
this sequence exists in both sequences. Combined with the first sequence it
can be used to generate a sequence of additions and deletions to convert the
first sequence into the second.

Files generated with diff can be applied with the command patch.

Contextual Diff

Diffs in context format start with a header, specifying the filenames which
were used to generate this diff. Hunks in context format diffs are delimited
by lines of asterisks.

Hunk headers start with asterisks or dashes and show the position and
length of the hunk in both, the original and new file. New lines are prefixed
by “+”, removed lines by “-” and changed lines are prefixed by “!”. Context
lines are prefixed by a space. Another space character is inserted between
this prefix and the actual line content.

Context lines in the output allow the application of the patch, even if
line numbers changed slightly by looking for matching context lines2. This
process is often called fuzzing.

An example patch file in contextual diff format can be seen in Listing 2.1.

1http://www.gnu.org/software/diffutils/manual/#Hunks
2http://www.gnu.org/software/diffutils/manual/#Imperfect

http://www.gnu.org/software/diffutils/manual/#Hunks
http://www.gnu.org/software/diffutils/manual/#Imperfect

2. Version Control in General 8

Listing 2.1: Patch file in contextual diff format

1 --- file.old 2010-01-03 13:52:54.000000000 +0100

2 +++ file.new 2010-01-03 13:53:18.000000000 +0100

3 ***************

4 *** 1,3 ****

5 --- 1,4 ----

6 + a

7 1

8 2

9 3

10 ***************

11 *** 5,12 ****

12 5

13 6

14 7

15 ! 8

16 ! 9

17 10

18 11

19 12

20 --- 6,14 ----

21 5

22 6

23 7

24 ! b

25 ! c

26 ! d

27 10

28 11

29 12

30 ***************

31 *** 14,17 ****

32 14

33 15

34 16

35 - 17

36 --- 16,18 ----

Unified Diff

The unified format is similar to the context format, but generates usually
less output for the same set of differences. Context format will print context
lines for both files when lines are changed, where as unified diff merges the
new and original hunks into a single hunk of added and removed lines, so
context lines only need to be printed once.

Hunk headers in unified diff format are surrounded by two at signs (@@).
Many diff implementations proceed this header with the name of the section
the change occurred in (e. g. the function name in a C source file), although
POSIX3 does not define anything to come after the header line. Such section

3Portable Operating System Interface

2. Version Control in General 9

comments are especially useful when a programmer wants to have a quick
glance at what changed in the file.

Removed lines start with “-”, added lines start with “+”, changed lines
are represented by a pair of add-remove lines. Unchanged context lines are
prefixed with a single space character. This format or its variations are used
in almost every major version control system (Subversion, Bazaar, Mercurial,
Git).

The same difference shown in Listing 2.1 expressed as a unified diff can
be seen in Listing 2.2 below:

Listing 2.2: Patch file in unified diff format

1 --- file.old 2010-01-03 13:52:54.000000000 +0100

2 +++ file.new 2010-01-03 13:53:18.000000000 +0100

3 @@ -1,3 +1,4 @@

4 +a

5 1

6 2

7 3

8 @@ -5,8 +6,9 @@

9 5

10 6

11 7

12 -8

13 -9

14 +b

15 +c

16 +d

17 10

18 11

19 12

20 @@ -14,4 +16,3 @@

21 14

22 15

23 16

24 -17

2.2.5 Merge

Merging is the process of incorporating changes from different sources into
the same file or project. By calculating the difference between two files and
their common ancestor (commit where development diverged) it is possible
to apply all changes to this ancestor, resulting in a file containing both
versions. This is called a three-way merge.

A three-way merge is described by the following mathematical state-
ments [Baudǐs, 2009, 6.2 Three-way Merge]:

2. Version Control in General 10

dx = ∆(b, x)

dy = ∆(b, y)

d = dx ∪ dy

m = ∆−1(b, d)

To begin with, the difference (∆) between the common ancestor (base,
b) and both files is calculated, which is then combined in the second step.
The resulting difference (d) is then applied to the base, resulting in the new
version m with the changes from both files.

Merging in version control systems does not only work on file level, but
also on a project level: entire directory trees can be merged, but not all
systems support correct merging of renamed files. A special case is a fast-
forward merge, which can be used when one of the two differences is empty.
In such a case it is then unnecessary to create a new merged version, because
the would be equal to the version with changes.

Several other merge strategies exist, which primarily differ in the way
they select the common ancestor in case there are multiple candidates. This
usually happens after criss-cross merges, where the two revisions are merged
several times and conflicts are resolved differently each time. Git provides a
recursive merge algorithm which can perform a three-way merge between
the candidates recursively, to prevent mis-merges.

Bazaar uses the LCA4 merge which builds sets (new or killed) of lines
from all ancestors. If a line is contained in both sets a conflict is reported.
Recursive merge and LCA merge behave like a normal three-way merge,
when there is only a single common ancestor for a file.

A merge without conflicts can still result in broken code. A common
problem scenario which cannot be resolved automatically by version control
systems is renaming of variables or functions.

Listing 2.3: A semantic merge conflict

1 /* original version */

2 int a = 5;

3 a = doSomething(a);

4

5 anotherMethod();

6 /* more code ... */

7

8 /* developer A: changes variable name */

9 int x = 5; /* change to `x`, it better describes the purpose */

10 x = doSomething(x);

11

12 anotherMethod();

4least common ancestor

2. Version Control in General 11

13 /* more code ... */

14

15 /* developer B: new code, using variable a */

16 int a = 5;

17 a = doSomething(a);

18

19 anotherMethod();

20 /* more code ... */

21

22 int x = a << 2; /* store a*4 in new variable x */

23

24 /* merged version */

25 int x = 5; /* change to `x`, it better describes the purpose */

26 x = doSomething(x);

27

28 anotherMethod();

29 /* more code ... */

30

31 int x = a << 2; /* store a*4 in new variable x */

Both versions before the merge in Listing 2.3 compile and run without
problems, but the merged version will not be compilable, because of the
undeclared variable ‘a’ and the double declaration of the variable ‘x’. Such
problems can only be avoided by good communication between members of
the project team.

It is best to always check and test automatic merge resolutions of version
control systems; most projects have a policy that every commit has to be
compilable. Thorough unit tests help to discover errors introduced by merges.

Listing 2.4: A typical conflict with conflict markers

1 <<<<<<<

2 int x = 2; // fast

3 =======

4 int x = 4; // accurate

5 >>>>>>>

When a version control system detects textual conflicts during merge or
patch operations, i. e. two changes modify the same set of lines, it usually
inserts both versions of the changed line into the final merged file.

Conflict hunks start with ‘<<<<<<<’ and end with ‘>>>>>>>’, both versions
of a changed set of lines are printed between these two markers and are
separated by ‘=======’. The diff3 format prints the original unchanged line
between ‘|||||||’ and ‘=======’. A simple merge conflict with conflict markers
is shown in Listing 2.4.

Version control systems often put additional information after conflict
markers to help developers to resolve the conflict, e. g. version numbers or
identifiers for each side of the merge hunk.

2. Version Control in General 12

2.2.6 Mainline, Branches and Tags

A branch is “a forked line of development in your project, with the line that
has been forked off called the branch, and the main line the trunk” [Vesper-
man, 2003, 4.3 Branching]. Depending on the type of version control system
it is possible to branch a group of files, directories or the whole project – this
applies to tags as well.

[Vesperman, 2003, 4.3.1 Uses for Branches] lists five common use cases
for branches:

� Variations on a theme, such as stored configurations for similar servers

� Bugfix management

� Experimental work, such as experimental code or a new web page
design

� Major changes, such as complete code rewrites

� Release candidates for testing

[Vesperman, 2003, 4.4.1 Branching Philosophies] describes different
branching philosophies and styles for CVS, but they apply to all version
control systems which support branching and merging. There are two philoso-
phies, basically stable and basically unstable. Basically stable only allows
code in the trunk, which is verified to work, whereas development happens
exclusively in branches. Release candidates can be quickly created by taking
code from the stable and slowly changing trunk.

With the unstable philosophy development mainly happens in trunk.
When planning a release, a new branch is started on which the code base
is prepared for the release. Most of the time the trunk contains buggy code
which might not even compile.

In addition to these branching philosophies, several branching styles exist.
While it makes sense to only use one philosophy per project and enforce its
usage, different branching styles can be used in a single project.

Branches can be categorized by their duration and direction of merging
(cf. [Vesperman, 2003, 4.4 Branching Strategies] [Pilato et al., 2004, Chapter
4, Section 4]):

� Long branch, merging to branch: This style should be used when
code in the branch should not affect code in the trunk, but the branch
needs changes from trunk. It is mainly used to refactor code or develop
bigger features which are incompatible with existing code; newer version
control systems usually speak of a feature branch or topic branch.
Typically it is used in combination with the philosophy of basically
stable.

2. Version Control in General 13

� Long branch, merging to trunk: If a branch should not be affected
by development in trunk, but the trunk should receive changes from the
branch, this model can be used. It is mainly used to make corrections
in the branch, which should be applied to the trunk as well; newer
version control systems often call it a maintenance branch or release
branch. It can be used with stable and unstable trunk policies.

� Long branch, merging both trunk and branch: Long lived
branches which depend on new code from trunk, but whose changes
can be reintegrated back to trunk early should use this strategy. This
can also be a feature branch, where a feature is added step by step.

� Short branches: Short lived branches are used to make simple changes
or to add small features. Long branches merging in both directions can
be simulated using a series of short branches; instead of merging the
trunk to the branch, a new branch is created off trunk. When both,
trunk and branch, change significantly, this might be the right method.

� Nested branches: Branches can not only be created from the trunk,
but also from other branches. The parent branch then acts as a virtual
trunk – every discussed branching style can be used for nested branches.

Chapter 3

Centralized Version Control

Centralized version control builds upon the idea of a client-server architecture,
where a single central server stores a repository which can be accessed by
clients. Only privileged users can update the repository on the server, but
anonymous clients may be granted read privileges.

Branches can be created only on the server and are visible to everyone by
default. The server assigns revision identifiers and numbers to each commit.
These revision numbers are authoritative and globally unique.

3.1 Tools

This section will present two very popular centralized version control systems,
namely CVS and Subversion. The legacy systems RCS1, SCCS2 and CSSC3

will not be discussed, as they are mostly irrelevant nowadays and do not
work for multiple users.

3.1.1 Concurrent Versions System (CVS)

The project CVS was started to extend RCS – one of the first version control
systems – to work over the network and to overcome some of its shortcomings.
RCS could only control one file at a time and had no notion of projects. RCS
stored the history of a file in the same directory as the versioned file under
the same name with ‘,v’ appended (the history of the file ‘file.txt’ was
stored in ‘file.txt,v’).

In its beginning CVS was a collection of wrappers calling the RCS
commands, which is still visible in its file format (cf. [Vesperman, 2003, 6.
Repository Management]). Revisions are recorded per file and are committed

1Revision Control System
2Source Code Control System
3Compatibly Stupid Source Control, the GNU implementation of SCCS

14

3. Centralized Version Control 15

independently and as a consequence of this, commits are non-atomic. History
graphs could be different between files and are basically independent.

The history of revisions of project files is stored in RCS format and CVS
uses the same dotted decimal revision numbering scheme as RCS, where a
revision is represented by a prefix and revision identifier (e. g. ‘2.6.2.1’). New
revisions increment the revision identifier (number after last period) and
new branches add a new fragment (the branch number) before the revision
identifier [Vesperman, 2003, 4.3.7 Branch revision numbers]. CVS inherits
the inability of RCS to properly record file renames and to move or delete
directories.

A particular state of the whole project has to be marked using tags
or named branches, since revision numbers are independent of each other
and commit times are unreliable due to the non-atomicity of commits. This
conceptionally groups files and revisions. A file can be in multiple branches
and tags at the same time.

The latest stable version of CVS (1.11.23) was released on May 8th, 2008.

3.1.2 Subversion

Why does this project exist?
To take over the CVS user base. Specifically, we’re writing a

new version control system that is very similar to CVS, but fixes
many things that are broken.

— Subversion FAQ

Subversion was started in May 2000 by CollabNet, Inc.4 as a replacement
for CVS, because CVS had some obvious design flaws inherited from RCS
(non-atomic commits, per-file revision numbers). Subversion uses an user
interface very similar to CVS, so users proficient in CVS should have minimal
problems learning Subversion. In August 2001 Subversion became self hosting,
the team migrated from a CVS repository to a Subversion repository.

Subversion stores older revisions using skip deltas, an approach similar
to skip lists. Deltas are not generated against the immediate predecessor
revision, but against an earlier revision which is determined by an algorithm.
Subversion uses bit-arithmetic to produce delta lists of length ld(revision)5.

Due to the non-atomicity of operations in CVS, users could check out
files from a repository while another developer was committing and therefore
might only get part of the new changes. Also a commit operation could
fail, after some files were already written to the repository. This was usually
caused by an out-of-date sandbox. The developer then had to update his
sandbox, resolve potential conflicts and commit again. All this time the

4http://www.collab.net
5http://svn.apache.org/repos/asf/subversion/trunk/notes/skip-deltas

http://www.collab.net
http://svn.apache.org/repos/asf/subversion/trunk/notes/skip-deltas

3. Centralized Version Control 16

repository was in an untested and probably inconsistent state, visible to
every other user.

Commits in Subversion are transactional and do not exhibit this problem.
When a commit fails, the repository is rolled back to a known good state
and the developer can fix conflicts without worrying about others. Atomic
commits enable Subversion to use repository-global revision numbers.

Subversion does not differentiate between branches, tags and the project
trunk (mainline). Each of them is represented by standard directories, thus
allowing developers great freedom in arranging their repository. The recom-
mended repository layout is to have a ‘trunk’ folder for mainline develop-
ment, a ‘branches’ folder for branches and a ‘tags’ folder to tag certain
revisions [Pilato et al., 2004, Repository layout].

Because Subversion allows sparse checkouts (checkout of a subdirectory
of the repository), it is also common practice to host multiple projects in
a single repository. In this case projects are hosted in separates directories
each containing the trunk, branches and tags structure. First and second
level of the directory might be switched in such a case though, so the trunk,
tags and branches directories contain the project sub-folders6.

Branches and tags in Subversion are therefore mutable. While this is
desirable for branches, tags should never change. The only thing that differ-
entiates the trunk from branches and from tags in Subversion is convention
and agreement between developers.

Subversion is still under active development and Subversion 1.6.15 was
released on October 24th, 2010.

6The best example is the Apache Software Foundation repository, browsable at http:
//svn.apache.org/viewvc/

http://svn.apache.org/viewvc/
http://svn.apache.org/viewvc/

Chapter 4

Distributed Version Control

4.1 Differences to Centralized Version Control
Systems

Network traffic and bandwidth are cheap these days, but disk space was
and is much cheaper. Additionally there will be always times when there is
no network or Internet around, but usually developers have access to their
hard-drive. This is one of the many reasons, why modern version control
systems took the step from using a single central server to distributing source
code across hosts.

Having the complete repository on a local hard disk enables developers
to experiment with the code base without influencing the work of others. A
disadvantage of this model is that deleted files have to be copied every time
a repository is cloned, which might incur a performance loss on projects with
long history. With source code files this usually isn’t a problem, but with a
lot of binary files which compress badly, the size of a repository might grow
too fast.

In centralized version control users make changes in their working copy
and interact directly with a single main repository. To store and retrieve new
changes ‘commit’ and ‘update’ is used. Committing changes in a distributed
version control system only works on the local copy of the repository, thus
new commands to synchronize distinct repositories are needed.

Most systems adapt a push/pull workflow, where developers selectively
pull changes from other developers or remote repositories, and push changes
to remote copies.

Whereas conflicts in centralized version control occur directly on update
and could destroy a developers work during update, users using the distributed
approach can delay updating/merging their working copy until they are ready
to do so.

While branching in centralized version control systems was very easy (a
branch in Subversion is just a copy of the trunk or any other directory, created

17

4. Distributed Version Control 18

Figure 4.1: Centralized development model

Server

Working Copy
Developer 1

Working Copy
Developer 2

Working Copy
Client 2

Working Copy
Client 3

Working Copy
Client 5

Working Copy
Client 6

with the svn copy command), merging often led to problems. Subversion
only recently gained the ability to automatically merge branches without
specifying revisions (merge tracking properties). Prior to this developers had
to remember the start and end points of branches.

Because every developer effectively owns a branch of a project, branching
and merging is possibly the most common task when using distributed version
control systems collaboratively.

When renaming a file in a branch and changing it in the trunk or another
branch, this would result in a tree conflict [Pilato et al., 2004, Keeping a
reintegrated branch alive]. To properly merge branches in Subversion great
care must be taken when working with a branch.

Distributed systems internally maintain a DAG1 of history, which allows
them to identify exactly which changes have to be merged and which changes
have already been merged. Changes can follow renames of files and branches
can be merged to and from the trunk many times without inherent problems.

Copying (branching) is easy, but integrating and synchronizing changes
(merging) between different copies is difficult and the relevant aspect.

1Directed acyclic graph

4. Distributed Version Control 19

Figure 4.2: Distributed development model

Repository
Developer 1

Repository
Developer 2

Repository
Client 2

Repository
Client 3

Repository
Client 5

Repository
Client 6

Figure 4.3: Distributed development model in combination with server

Repository
on Server

Repository
Developer 1

Repository
Developer 2

Repository
Developer 3

Repository
Client 2

Repository
Client 3

Repository
Client 5

Repository
Client 6

4.2 Concepts of Distributed Version Control Sys-
tems

As mentioned in the previous section, a significant key feature of distributed
version control systems is their distributed nature: Each repository of the same
project is treated equally, eliminating the need for a main repository server,
thus reducing the number of network operations. This allows developers to
implement bigger features without disturbing or breaking the work of other

4. Distributed Version Control 20

developers.

4.2.1 Revision identifiers

[Baudǐs, 2009] mentions three important properties of revision identifiers:

� Uniqueness: A revision number is guaranteed to be unique in a
repository.

� Simplicity: Easy to remember and to use (e. g. incrementing numbers
give information about the order in which commits happened).

� Stability: Identifiers should not change between repositories or over
time.

While centralized version control system can satisfy all three requirements,
distributed systems cannot satisfy all three directly. A central authoritative
server can assign revision numbers which are unique per project, stable and
easy to use. Subversion produces simple integers to represent revisions.

Distributed systems can use hash functions to produce unique and stable
revision identifiers, but those are usually not easy to remember and use.
Mercurial and Bazaar offer local incrementing revision numbers which are
easy to use, but not stable, i. e. they change between different repositories or
after a merge operation.

4.2.2 Integrity

It must be possible to verify the content and history of a repository. One-
way cryptographic hash functions are very good at achieving this. Hash
functions turn arbitrary messages (M) into a fixed-length hash value (h =
H(M)) [Schneier, 1996, Chapter 18.7 Secure Hash Algorithm (SHA)]. One-
way hash functions have additional characteristics, which make them perfect
candidates for verifying files and repositories. Systems which use hashes
to identify certain objects also require collision resistance from the hash
function.

A hash function must meet the following requirements:

� Given M , it is easy to compute h

� Given h, it is hard to compute M such that H(M) = h

� Given M , it is hard to find another message, M ′, such that H(M) =
H(M ′)

� It is hard to find two random messages, M and M ′, such that H(M) =
H(M ′) (Collision resistance)

Most distributed version control systems use SHA12 as their hashing

2Secure hashing algorithm

4. Distributed Version Control 21

Figure 4.4: Directed acyclic graph representing history of a project

A B C

D E G

F H I J K . . .

L M . . .

N . . .

function. Hashes generated by SHA1 are of length 160 bit.

Listing 4.1: SHA1 example

1 SHA1('distributed version control') =

2 '992ecca98df8f64297e65763e5be119b311971c2'

4.2.3 History representation

History in distributed version control systems can be represented as a DAG3,
where each commit points to its ancestor or ancestors. A directed graph (or
digraph) consists of a non-empty finite set of elements called vertices and a
finite set of ordered pairs of distinct vertices called arcs. A digraph is acyclic
if it has no cycle [Bang-Jensen and Gutin, 2008, 2.1 Acyclic Digraphs].

N+
D (v) = {u ∈ V − v : vu ∈ A} is called the out-neighbourhood and

N−D (v) = {w ∈ V − v : wv ∈ A} is called the in-neighbourhood. Commits
with an out-neighbourhood greater than one are merges in DVCS terminology,
where as commits with an in-neighbourhood greater than one are branching
points in history. A commit can be a merge commit and a branching point
at the same time. For initial commits in a project the out-neighbourhood is
zero, and branch tips have an in-neighbourhood of zero. Such a DAG can be
seen in Figure 4.4.

4.3 Tools

This section explains the object and storage model of Bazaar, Git and
Mercurial. Listings are made against the official upstream version of each
project and can be run at any later time to get the same results.

3directed acyclic graph, acyclic digraph

4. Distributed Version Control 22

Figure 4.5: Lines of code (Bazaar)

Python
195313
98%

C (incl. headers)
2715
1%

Others
1564
1%

4.3.1 Bazaar

The number one thing I want from a distributed version control
system is robust renaming. [. . .] Distributed version control is all
about empowering your community, and the people who might
join your community.

— Mark Shuttleworth

Development for Bazaar was started by Canonical in an effort to improve
one of the early distributed systems available for version control, GNU Arch4.
Started as a branch to make working with Arch more comfortable, Canonical
soon saw that Bazaar evolved differently than Arch and had different goals –
Bazaar was born.

Bazaar hides implementation details of underlying structures and ab-
stracts access to low level objects through a stable API. Upgrading a data
format thus has little effect on higher levels; in fact the internal repository
format was already changed several times in the past.

Bazaar is the only one of the analyzed systems which is able to track
empty directories.

4http://wiki.bazaar.canonical.com/HistoryOfBazaar, http://www.gnu.org/software/gnu-
arch/

http://wiki.bazaar.canonical.com/HistoryOfBazaar
http://www.gnu.org/software/gnu-arch/
http://www.gnu.org/software/gnu-arch/

4. Distributed Version Control 23

Branches in Bazaar are created by cloning a repository (a repository is
called branch in Bazaar); each Bazaar repository may only have one branch
head.

As a workaround Bazaar provides shared repositories5 to store multiple
branches in a single repository. Working copies can also be detached from
branches, which allows to mimic a workflow similar to centralized systems,
where commands work directly on a central server. Such working copies can
be converted back to distributed independent branches.

Projects which use Bazaar for version control include Ubuntu, MySQL,
Inkscape, Bugzilla6.

Repository Structure

Text
Text objects in Bazaar store line-based text files (e. g. source code). The

exact storage on disk is unspecified by Bazaar and depends on the storage
format chosen for a branch. Earlier versions of Bazaar stored files in weave
format, newer versions use format 2a which uses a groupcompress algorithm
to achieve better performance and scalability.

Text objects are accessed through Bazaar’s API with the tuple
(file_id, rev_id). When Bazaar is instructed the first time to track his-
tory for a file, it creates a unique, permanent identifier for the file. File
ids have the format “file name - timestamp (YYYYMMDDhhmmss) - 16 char random

string - number”.
When importing projects from other version control systems, Bazaar

creates the file id from information specific to that version control sys-
tem. A file id for a file imported from Subversion looks like “1864@b9310e46
-f624-0410-8ea1-cfbb3a30dc96: %2Flinux%2FX%2Fsymbols%2Fde”. Referencing files
through their unique and permanent file ids allows Bazaar to merge across
file renames.

Revision
Revisions provide additional metadata to a state of the project and contain

the author, a timestamp, the commit message and a list of parents. Revisions
imported from other systems usually contain metadata such as original
revision numbers and committer names.

Parents do not have to exist in the same repository (ghost revisions, e. g.
‘mbp@sourcefrog.net-20050711064100-c2eb947e0212f487’ in bzr.bzr), which
allows Bazaar to do lightweight checkouts. This implies that it is not possible
to verify that a revision identifier links to an existing revision.

5http://wiki.bazaar.canonical.com/SharedRepositoryLayouts
6http://bugzilla.org, http://ubuntu.com, http://mysql.com, http://inkscape.org

http://wiki.bazaar.canonical.com/SharedRepositoryLayouts
http://bugzilla.org
http://ubuntu.com
http://mysql.com
http://inkscape.org

4. Distributed Version Control 24

Revision identifiers are a simple strings of the form “email - timestamp (

YYYYMMDDhhmmss) - 16 char random string” and are created when committing a
new revision.

Listing 4.2: Revision ids starting at r5410

1 $ bzr log --show-ids \

2 -r 1..revid:pqm@pqm.ubuntu.com-20100906113342-s41muavhjutdc7xr \

3 | grep ^revision-id | cut -d' ' -f2

4 pqm@pqm.ubuntu.com-20100906113342-s41muavhjutdc7xr

5 pqm@pqm.ubuntu.com-20100903025310-t8mj1bjq4fsyxk7p

6 pqm@pqm.ubuntu.com-20100903013246-mydkx60um8b2trfq

7 pqm@pqm.ubuntu.com-20100903001355-l29hnxtjgnlhpq2f

8 pqm@pqm.ubuntu.com-20100902225129-83167cameln73xz2

9 ...

Bazaar exposes CVS-like revision numbers similarly to its users, where
revisions on a branch are prefixed with a branch number. Revision num-
bers represent a view on the local repository, mainline revisions are simple
increasing integers.

Branch revisions are represented in a dotted decimal fashion, the first
number being the revision when the branch was created, the second number
standing for the branch number (if multiple branches are branched from the
same commit or a branch is created from a branch) and the last number is
again an incrementing integer which is local to that branch. When referring
to revision numbers it is necessary to mention a branch URL as well.

Currently, Bazaar (format 2a) stores revision data in bencoded7 form.

Listing 4.3: Bencoded data of a revision

1 $ bzr cat-revision pqm@pqm.ubuntu.com-avhjutdc7xr342-s41mua

2 ll6:formati10eel9:committer54:Canonical.com Patch Queue Manager <pqm@pqm.

ubuntu.com>el8:timezonei3600eel10:propertiesd11:branch-nick6:+

trunkeel9:timestamp14:1283772822.691el11:revision-id50:pqm@pqm.

ubuntu.com-20100906113342-s41muavhjutdc7xrel10:parent-idsl50:pqm@pqm.

ubuntu.com-20100903025310-t8mj1bjq4fsyxk7p52:v.ladeuil+lp@free.fr

-20100906100836-ufi18ftz3zx901o7eel14:inventory-sha140:76

eedc47510eefa74efa417deba2971abbf20e8ael7:message93:(vila) Cleanup

imports in bt.per_wt.test_pull (most of them were useless).

3 (Vincent Ladeuil)ee

Inventory
An Inventory describes the tree state of the project for a given revision. It

contains a list of paths and file ids. An entry additionally covers the following
fields: the file id of the parent directory, revision id of the file, executable
flag, SHA1 of the file contents and the size of the file.

7BitTorrent encoded

4. Distributed Version Control 25

Subsequent inventories can be expressed as deltas against the previous
inventory. Such a delta consists of a list of tuples ‘(old path, new path, file

id, new entry)’. Different values for old path and new path indicate a rename.
Setting either to the special value ‘None’ results in an addition or removal of
the file.

Listing 4.4: Inventory for r5410

1 $ bzr inventory --show-ids \

2 -r revid:pqm@pqm.ubuntu.com-20100906113342-s41muavhjutdc7xr

3 .bzrignore bzrignore-20050311232317-81f7b71efa2db11a

4 .rsyncexclude rsyncexclude-20050408053852-27e0a5928b682...

5 .testr.conf testr.conf-20100228092111-z02a13qrv22mn7up-1

6 BRANCH.TODO BRANCH.TODO-20060103052123-79ac4969351c03a9

7 COPYING.txt gpl.txt-20060725144612-kxut42v3nkatynfv-1

8 INSTALL INSTALL-20051019070340-4b27f2fb240c7943

9 MANIFEST.in manifest.in-20100109214549-ime1ec4zij1zkovi-1

10 Makefile Makefile-20050805140406-d96e3498bb61c5bb

11 NEWS NEWS-20050323055033-4e00b5db738777ff

12 NEWS-template.txt newstemplate.txt-20100219053124-f4a3zo3uji...

13 ...

14 bzrlib/__init__.py __init__.py-20050309040759-33e65acf91bbcd5d

15 bzrlib/_annotator_py.py _annotator_py.py-20090617192546-21fnjrg2s2...

16 bzrlib/_annotator_pyx.pyx _annotator_pyx.pyx-20090623201937-ic33ic1a...

17 bzrlib/_bencode_pyx.h _bencode_pyx.h-20090604155331-53bg7d0udmrv...

18 ...

Testament
Testaments are used to certify revisions as authentic. Two semantically

equal revisions will have the exact same testament. Testaments are generated
from a subset of information from a particular revision, which is considered
stable even when the underlying storage format of revisions changes.

The following fields are stored in a testament: testament version, revision-
id, unix timestamp, timezone identifier, parent revision-ids, commit message
of the corresponding commit, a list of inventory entries in canonical form
plus hashed contents of files, branch name.

Listing 4.5: Long testament for r5430.1.2

1 $ bzr testament --long \

2 -r revid:andrew.bennetts@canonical.com-20100917065959-p7syp0v4z3aep4y8

3 bazaar-ng testament version 1

4 revision-id: andrew.bennetts@canonical.com-20100917065959-

p7syp0v4z3aep4y8

5 committer: Andrew Bennetts <andrew.bennetts@canonical.com>

6 timestamp: 1284706799

7 timezone: 36000

8 parents:

9 andrew.bennetts@canonical.com-20100917043523-c5t63gmvxqxmqh5j

10 pqm@pqm.ubuntu.com-20100917064608-qm7k0sez9941oj85

11 message:

4. Distributed Version Control 26

12 Merge latest lp:bzr/2.2.

13 inventory:

14 file .bzrignore bzrignore-20050311232317-81f7b71efa2db11a

cc2b0834b2e5e62257a36d3f4d1f06a67c382142

15 ...

16 directory apport contribapport-20100131162357-aladkx1ilh730byb-1

17 file apport/README readme-20100131163221-0u77xzj0p9auj54u-1 5

cc4bad4e5254bde9025942f0d9102533593ae35

18 file apport/bzr-crashdb.conf bzr.conf-20100131163221-0u77xzj0p9auj54u

-2 27d1fb56418582428a7d46f633cf193d5080788d

19 file apport/source_bzr.py source_bzr.py-20100131163221-0

u77xzj0p9auj54u-3 10cc21ac457c0b0bce6aacc373f89c160847d131

20 file bzr bzr.py-20050313053754-5485f144c7006fa6

eadc881054d9a8f11667e9cc6073605e6a19f3a8

21 file bzr.ico bzr.ico-20060629083000-q18ip0hk7lq55i4y-1 1

bc526f63a65fae06ab88d238559b1a52e5fbd1f

22 directory bzrlib bzrlib-20050309040749-4ac9a0e211602846

23 ...

24 properties:

25 branch-nick:

26 merge-2.2-into-devel

The short form which is used for signing only contains the testament
version, revision-id and the hash of the long form. When a testament is
signed, the hash function which was used to generate the hashes is prepended
to the message.

Listing 4.6: Signature of r5430.1.2

1 $ bzr cat-signature \

2 -r revid:andrew.bennetts@canonical.com-20100917065959-p7syp0v4z3aep4y8

3 -----BEGIN PGP SIGNED MESSAGE-----

4 Hash: SHA1

5

6 bazaar-ng testament short form 1

7 revision-id: andrew.bennetts@canonical.com-20100917065959-

p7syp0v4z3aep4y8

8 sha1: 9243b8fc132d437c52615383f473b93ef2e63f3f

9 -----BEGIN PGP SIGNATURE-----

10 Version: GnuPG v1.4.10 (GNU/Linux)

11

12 iEYEARECAAYFAkyTEfAACgkQkHkW2hvmQuWolwCeI4xSqEMIFmHJIPSgt+tNkSih

13 HwcAnAh7Yrj3UH8Xj24Gpkbis3TqGbQz

14 =WSEl

15 -----END PGP SIGNATURE-----

A strict form of the testament exists, which includes additional infor-
mation for each inventory entry, namely the last changed revision and the
executable flag.

4. Distributed Version Control 27

Figure 4.6: Lines of code (Git)

C (incl. headers)
117644
47%

Shell scripts
89557
36%

Perl
23848
10%

Tcl/Tk
9762
4%

Makefile
2748
1%

Others
6345
3%

4.3.2 Git

[. . .] It’s not an SCM, it’s a distribution and archival mech-
anism. I bet you could make a reasonable SCM on top of it,
though. Another way of looking at it is to say that it’s really a
content-addressable filesystem, used to track directory trees.

— Linus Torvalds

Git is a distributed version control system started by Linus Torvalds in
early April 2005 to aid kernel development. It was developed as a replacement
for BitKeeper8 which changed its license so kernel developers could no longer
use it for free. In July 2005 Torvalds selected Junio C Hamano to become
the new project maintainer for Git.

The pursued goals were performance and scalability. Git had to work well
for thousands of developers9 and tens of thousands of files10. In the beginning
Git was a collection of shell scripts which called a few core commands written
in C. Over time many of the shell scripts were replaced by native C code to
improve performance of Git.

Git makes heavy usage of the SHA1 hashing algorithm to verify and
guarantee project integrity. This makes it almost impossible for an attacker

8http://www.bitkeeper.com
97022 unique authors in Linux kernel 2.6.36-rc3

1033556 source files, 13234910 lines of code, 210153 commits, 449 MB, Linux kernel
2.6.36-rc3, since April 16, 2005

http://www.bitkeeper.com

4. Distributed Version Control 28

to change information in the repository without others noticing it. Git’s diff
algorithm is based on LibXDiff11 since 25th March 2006 which has since then
been heavily extended and optimized for Git.

Projects which use Git for version control include the Linux kernel,
Android, Wine, X.org12.

Repository structure

Git’s storage model is not based on changes but on snapshots. Each commit
will point to a full tree object which in turn points to other tree objects or
complete files (blobs). Because blobs and trees can be identified by their
hash, already existing objects can be reused and do not have to be stored
multiple times [Chacon, 2009, 1.3 Snapshots, Not Differences].

This means a git commit object will always contain the hash of a tree
object which is a full snapshot of a project’s working tree state, but only
changed objects are newly stored with each commit and existing objects are
simply re-used. Git can delta compress objects in a self-contained packfile to
preserve space. Integrity is guaranteed through a SHA1 checksum over the
compressed contents.

Commit
Commit objects contain the hash of the associated tree object, a list of zero

or more parents hashes, the author name and creation time, the committer
name and commit time and a commit message.

Listing 4.7: An octopus merge commit

1 $ git cat-file commit 211232bae64bcc60bbf5d1b5e5b2344c22ed767e

2 tree cdafa88fa4ed7fcc7bb6c64d62e2d7c4d3b65e42

3 parent fc54a9c30ccad3fde5890d2c0ca2e2acc0848fbc

4 parent 9e30dd7c0ecc9f10372f31539d0122db97418353

5 parent c4b83e618f1df7d8ecc9392fa40e5bebccbe6b5a

6 parent 660265909fc178581ef327076716dfd3550e6e7b

7 parent b28858bf65d4fd6d8bb070865518ec43817fe7f3

8 author Junio C Hamano <junkio@cox.net> 1115335014 -0700

9 committer Junio C Hamano <junkio@cox.net> 1115335014 -0700

10

11 Octopus merge of the following five patches.

12

13 Update git-apply-patch-script for symbolic links.

14 Make git-prune-script executable again.

15 Do not write out new index if nothing has changed.

16 diff-cache shows differences for unmerged paths without --cache.

17 Update diff engine for symlinks stored in the cache.

18

19 Signed-off-by: Junio C Hamano <junkio@cox.net>

11http://www.xmailserver.org/xdiff-lib.html
12http://kernel.org, http://android.com, http://winehq.org, http://x.org

http://www.xmailserver.org/xdiff-lib.html
http://kernel.org
http://android.com
http://winehq.org
http://x.org

4. Distributed Version Control 29

In Git a commit object can contain an arbitrary number of parents. A
commit without parents is called a root commit. In centralized version control
this would be commit number 1. Projects managed with Git can have more
than one root commit and a repository can even contain several unrelated
projects.

Normal commits in history have a single parent and are created by editing
files, adding changes to the index and then calling the commit command.
Running the merge command will create a new commit with more than
one parent, a merge commit. A special form of the merge commit is the
so-called octopus merge, which has more than two parents. Git has no notion
of local revision numbers as other distributed version control systems have.
To reference commits users have to use their hash id or branch names. Git
provides a special syntax to access ancestors of commits. The most commonly
used are shown in the following listing:

Listing 4.8: Specifying parents

1 ^n selects the n-th parent of a merge, if n is omitted 1 is assumed

2 ~n selects the n-th parent of the commit, following the first parent of

merge commits

3 @{n} selects the n-th last commit to which the ref pointed (cf. reflog)

4 ^{type} dereferences an object to the specified type. i.e. v1.7.2^{tree}

will

5 return the tree object referenced by the commit referenced by the v1

.7.2 tag

These tokens can be combined arbitrarily to specify any commit in the
ancestry line. ‘master^^2~4’ will select the fourth parent of the right parent
of the merge which happened one commit before master.

Commit objects are the only objects in Git which store ancestry informa-
tion and allow to walk history – tree and blob objects are referenced either
directly or indirectly by a commit object.

Listing 4.9: Commit 05a59a0

1 $ git cat-file commit 05a59a087c29c0b5dd267ec0bd488829427cc3d7

2 tree 358d4a3faafb532c75bff09a14e80244c587a0aa

3 parent d0b16c8f878bef5c1268e033a3d1f427498c7008

4 author Daniel Knittl-Frank <knittl89+git@googlemail.com> 1274795151

+0200

5 committer Junio C Hamano <gitster@pobox.com> 1275602529 -0700

6

7 Show branch information in short output of git status

8

9 This patch adds a first line in the output of `git status -s` when given

10 the option `-b` or `--branch`, showing which branch the user is

11 currently on, and in case of tracking branches the number of commits on

12 each branch.

13

14 Signed-off-by: Daniel Knittl-Frank <knittl89+git@googlemail.com>

15 Signed-off-by: Junio C Hamano <gitster@pobox.com>

4. Distributed Version Control 30

Tree
Tree objects are a snapshot of a particular revision of the project, mapping

hashes of blobs and subtrees to paths and permissions (only the executable
bit is stored). This recursive approach is very similar to file systems, where a
directory can contain both files and directories.

Listing 4.10: The tree 358d4a3

1 $ git ls-tree 358d4a3faafb532c75bff09a14e80244c587a0aa

2 100644 blob 5e98806c6cc246acef5f539ae191710a0c06ad3f .gitattributes

3 100644 blob 14e2b6bde9bef55d678da8ba44dc180b039cd3ac .gitignore

4 100644 blob a8091eb5dfa430bf1b0537da47a31e7cf88d8622 .mailmap

5 100644 blob 536e55524db72bd2acf175208aef4f3dfc148d42 COPYING

6 040000 tree 8f387b2039a59b2915ec6db7be2ccafe311981ba Documentation

7 100755 blob e45513dee938dde3a8428a833fb43023b04ca95b GIT-VERSION-GEN

8

9 100644 blob 636ecdd896c1ceecf79ede6caf4e61c519681053 wt-status.c

10 100644 blob 4f190454e5b2ad46b33894fb55aa7dd8dd28d604 wt-status.h

11

Listing 4.11: ‘Documentation’ subtree

1 $ git ls-tree 8f387b2039a59b2915ec6db7be2ccafe311981ba

2 100644 blob ddb030137d54ef3fb0ee01d973ec5cee4bb2b2b3 .gitattributes

3 100644 blob 1c3a9fead579a9b52037f1bbe245998db8a2f40b .gitignore

4 100644 blob b8bf618a30fd32a014e41e1ba9914f5e652bdefd CodingGuidelines

5 100644 blob 04f69cf64e5d989bac3cd1c235e6a7e657c6c103 Makefile

6 100644 blob fea3f9935b7794ce86f04d22c9d68fb9d537167d RelNotes-1.5.0.1.

txt

7

Blob
Blobs13 represent the actual file data. Each blob gets the SHA1 hash of

its contents assigned.
Blobs are created in the ‘.git/objects/’ directory, when a file or changes

are added with the git add command.

Listing 4.12: Content of blob 4f19045

1 $ git cat-file blob 4f190454e5b2ad46b33894fb55aa7dd8dd28d604

2 #ifndef STATUS_H

3 #define STATUS_H

4

5 #include <stdio.h>

6 #include "string-list.h"

7 #include "color.h"

8

9 enum color_wt_status {

10 WT_STATUS_HEADER = 0,

11 WT_STATUS_UPDATED,

12 ...

13binary large object

4. Distributed Version Control 31

Tag
Tags in git reference any other type (commit, tree, blob) and can be used

to give that object a meaning (e. g. ‘v1.7.2’ for a commit or ‘junio-gpg-pub’
for a blob). Tags can be annotated, i. e. equipped with an additional message.
Such messages are very useful for release management and often contain
release notes or the changelog for that release.

Additionally, annotated tags can be signed with a PGP14 key to confirm
the authenticity of the object it points to [Schneier, 1996, Chapter 20, Public-
Key Digital Signature Algorithms]. Due to Git’s internal data model and
feedback of object hashes to all commits, this does not only sign the current
state of the project, but the complete history – i. e. how this state was reached
– of the project.

Listing 4.13: Annotated tag v1.7.2 with signature

1 $ git cat-file tag v1.7.2

2 object 64fdc08dac6694d1e754580e7acb82dfa4988bb9

3 type commit

4 tag v1.7.2

5 tagger Junio C Hamano <gitster@pobox.com> 1279742158 -0700

6

7 Git 1.7.2

8 -----BEGIN PGP SIGNATURE-----

9 Version: GnuPG v1.4.9 (GNU/Linux)

10

11 iEYEABECAAYFAkxHUM8ACgkQwMbZpPMRm5oZcQCggTUlgYmUlHiafN/J83cRLWl9

12 ZGgAoIUiBUHFM2OyefhglVMRdya1gUWn

13 =FIkP

14 -----END PGP SIGNATURE-----

Staging Area

Git introduces another level of abstraction which most other version control
systems do not implement or hide from the user. The index, also called
the staging area, is used to prepare and mark changes for commit. The
index describes the state of the tree object which will be used when running
git commit. Content can be added and removed incrementally from it to build
up commits.

In case of merge conflicts the index contains information about which
line was changed by which parent and which hunks are still unresolved. The
user can then incrementally fix conflicts and diff against the index too see
which conflicts are still unresolved.

14Pretty Good Privacy

4. Distributed Version Control 32

Figure 4.7: Lines of code (Mercurial)

Python
44033
65%

Shell scripts
14218
21%

Tcl/Tk
3579
5%

C (incl. headers)
2617
4%

Lisp
1412
2%

CSS
1241
2%

Others
491
1%

4.3.3 Mercurial

Much thought has gone into what the best asymptotic perfor-
mance can be for the various things an SCM has to do and
the core algorithms and data structures here should scale rela-
tively painlessly to arbitrary numbers of changesets, files, and file
revisions.

— Matt Mackall

The first announcement about Mercurial was made late April 2005 by
Matt Mackall on the Linux Kernel Mailing List15. The project became
self-hosting on May 3rd.

Most parts of Mercurial are written in Python16, which makes it easily
portable to any system with support for Python 2.4. At the moment it is
possible to install Mercurial on Unix-like systems (Linux, Mac OS X) and
Windows. Mercurial’s main diff algorithm is similar to the diff algorithm
in python’s difflib [Mackall, 2006] and is one of the few pieces of Mercurial
implemented in C for performance reasons.

Projects which use Mercurial for version control include Mozilla Projects,
OpenOffice.org, Python17.

15http://lkml.indiana.edu/hypermail/linux/kernel/0504.2/0670.html
16http://python.org/
17http://python.org, http://openoffice.org

http://lkml.indiana.edu/hypermail/linux/kernel/0504.2/0670.html
http://python.org/
http://python.org
http://openoffice.org

4. Distributed Version Control 33

Revlog

Mercurial stores its history in a structure called a revlog. A revlog can take
three forms: filelog, manifest and changelog. It uses two files, the index file
with the extension ‘.i’ and the actual data file with the extension ‘.d’.

A revlog index entry uses 64 bytes and consists of the following fields:

� nodeid: The SHA1-hash to identify this revision is calculated by
concatenating parent ids – sorted ascending by value – and the data of
the revlog entry.

� first parent revision: This field is set to the parent revision. The
first entry in a revlog has both parents set to -1.

� second parent revision: This field is only set if this entry is the
result of a merge operation, otherwise it defaults to -1.

� offset: The offset of this revision’s data in the data file.

� length: Compressed and uncompressed length of the revision data in
bytes.

� base revision: Revision used as base for delta calculation.

� link rev: Revision number of the changelog, when this revlog entry
was created. For a changelog this field is equal to the revision number
of that entry.

� flags: Contains the version of the revlog format and additional proper-
ties.

Every entry in a revlog is compressed using the deflate compression
algorithm, but it is stored uncompressed, if the resulting data would be
bigger than the uncompressed data due to additional metadata. This is
important for already compressed data (archives, mp3, jpg, and other binary
data).

Mercurial stores changes individually per file in a so-called filelog. A
manifest describes the state of the project directory at a certain point in
history. A revision in Mercurial’s repository consists of its SHA1 hash, the
author, a pointer to the revision data (the manifest) and the two IDs of its
immediate parents.

4. Distributed Version Control 34

Listing 4.14: Changelog index

1 $ hg debugindex .hg/store/00changelog.i

2 rev offset length base linkrev nodeid p1 p2

3 0 0 305 0 0 9117c6561b0b 000000000000 000000000000

4 1 305 152 1 1 273ce12ad8f1 9117c6561b0b 000000000000

5 2 457 119 2 2 ecf3fd948051 273ce12ad8f1 000000000000

6 3 576 110 3 3 3a6392190075 ecf3fd948051 000000000000

7

8 100 13434 130 100 100 526722d24ee5 db5eb6a86179 000000000000

9 101 13564 144 100 101 6da5cf0c4193 526722d24ee5 000000000000

10 102 13708 99 102 102 58039eddbdda 3dde7c87e36d 6da5cf0c4193

11 103 13807 132 102 103 33500fe7d56c 47c9a869adee 000000000000

12 104 13939 106 104 104 20b3e7aad499 58039eddbdda 33500fe7d56c

13

14 11172 2092830 103 11172 11172 e9226eb3af2a 3d0a9c8d7184 3b3261f6d9ba

15 11173 2092933 318 11172 11173 5b48d819d5f9 e9226eb3af2a 000000000000

16 11174 2093251 135 11174 11174 ba78a1bfbfd9 5b48d819d5f9 000000000000

17 11175 2093386 236 11174 11175 39e7f14a8286 ba78a1bfbfd9 000000000000

Changelog
An example entry of the changelog from a mercurial repository is shown

below in Listing 4.15. The changeset ID matches with the nodeid from
the changelog index in Listing 4.14 above. The first line is the nodeid of
the manifest associated with this revision. The changelog also stores the
originating branch of each entry.

Listing 4.15: Data of changelog entry 39e7f14a8286

1 $ hg debugdata .hg/store/00changelog.d \

2 39e7f14a828666c2ca2e4560b4a41896a7692326

3 ffd1749b3205815d234c55ec0ed7ee40fca635e6

4 Matt Mackall <mpm@selenic.com>

5 1273849269 18000

6 tests/test-acl.out

7 tests/test-backout.out

8 tests/test-bundle-r.out

9 tests/test-bundle.out

10 ...

Manifest
The manifest describes the directory structure of the project at a given

time, it maps file revisions to actual files and permissions. Its a flat list,
storing the mapping between the stored SHA1 of a file and its location in
the directory tree in a canonical form. Additionally the executable bit is
stored for each file path. The first few lines from a manifest from the official
Mercurial repository can be seen in Listing 4.16.

Listing 4.16: Data of manifest ffd1749b3205 (column delimiters added for
clarity)

4. Distributed Version Control 35

1 $ hg --debug debugdata .hg/store/00manifest.d \

2 ffd1749b3205815d234c55ec0ed7ee40fca635e6

3 .hgignore 6d2dc16e96ab48b2fcca44f7e9f4b8c3289cb701

4 .hgsigs 3b484f8114aecb9571de2b32224c4950a027c403

5 .hgtags d8363fe5eadc8b10c90b4f56bdc08c2fd744feca

6 CONTRIBUTORS 7c8afb9501740a450c549b4b1f002c803c45193a

7 COPYING 5ac863e17c7035f1d11828d848fb2ca450d89794

8 Makefile 0962fb2061a3a21e699324ad757cb57bef257d18

9 README 8b836c38b9e9a8644e4468c67aeba1d217db335b

10 contrib/bash_completion deb2ad4a6d27e8bc1c05faad96f835f4f85e7ae0

11 contrib/buildrpm cf3ace555055fd6080a30f670fe7a0b519319990 x

12 contrib/check-code.py 5dd34662929933e3fb050e343f68addf0c216541 x

13

Filelog
The filelog stores the history of each individual file in the repository. Mercu-

rial stores these files in the directory ‘.hg/store/data’ which has the same
structure as the worktree. Special measures are taken for cross-platform com-
patibility: Capital letters are prefixed with an underscore to avoid problems
on case-insensitive file-systems, directory names cannot end with a period or
space thus the last character is replaced by an underscore, illegal characters
are encoded as ‘~xx’, xx being a two digit hex code. If the resulting filename
would exceed the file-systems maximum length for pathnames, the file is
stored under a irreversible hash name in ‘.hg/store/dh’.

A filelog index and the corresponding entry for revision 19 can be seen
in Listing 4.17 and Listing 4.18

Listing 4.17: Filelog of ‘CONTRIBUTORS’

1 $ hg debugindex .hg/store/data/_c_o_n_t_r_i_b_u_t_o_r_s.i

2 rev offset length base linkrev nodeid p1 p2

3

4 8 967 0 0 878 85cf8acf767b 136e6e9f03fe af9155a6730e

5 9 967 0 0 894 be579a35e6f0 85cf8acf767b d65b9e834aad

6 10 967 0 0 895 47a0f8bb36da 85cf8acf767b be579a35e6f0

7 11 967 0 0 896 6de0bd02887f d65b9e834aad 47a0f8bb36da

8 12 967 128 0 1080 ea694a28b9b1 6de0bd02887f 000000000000

9 13 1095 129 0 1231 ef9eec058694 ea694a28b9b1 000000000000

10 14 1224 142 0 1310 74e4b8afb382 ef9eec058694 000000000000

11 15 1366 52 0 1450 ef3c19e5b938 74e4b8afb382 000000000000

12 16 1418 54 0 2120 c1bca402be4e ef3c19e5b938 000000000000

13 17 1472 52 0 2162 d0701d05450a c1bca402be4e 000000000000

14 18 1524 48 0 2947 900bc7f182a5 d0701d05450a 000000000000

15 19 1572 141 0 5514 7c8afb950174 900bc7f182a5 000000000000

Listing 4.18: Data stored in nodeid 7c8afb950174

1 $ hg debugdata .hg/store/data/_c_o_n_t_r_i_b_u_t_o_r_s.i \

2 7c8afb9501740a450c549b4b1f002c803c45193a

3 [This file is here for historical purposes, all recent contributors

4 should appear in the changelog directly]

4. Distributed Version Control 36

5

6 Andrea Arcangeli <andrea at suse.de>

7 Thomas Arendsen Hein <thomas at intevation.de>

8 Goffredo Baroncelli <kreijack at libero.it>

9 Muli Ben-Yehuda <mulix at mulix.org>

10 Mikael Berthe <mikael at lilotux.net>

11 Benoit Boissinot <bboissin at gmail.com>

12 Brendan Cully <brendan at kublai.com>

13 ...

Listing 4.19: Index of ‘README’ file

1 $ hg debugindex .hg/store/data/_r_e_a_d_m_e.i

2 rev offset length base linkrev nodeid p1 p2

3

4 21 4483 248 0 633 df204fa43749 b4476c784622 000000000000

5 22 4731 108 0 969 8da5d4f33e95 df204fa43749 000000000000

6 23 4839 0 0 981 a903ec460ca8 8da5d4f33e95 df204fa43749

7 24 4839 120 0 1308 fd3d82992166 a903ec460ca8 000000000000

8 25 4959 12 0 2031 08a20b374b3c fd3d82992166 000000000000

9 26 4971 372 0 2208 9c4fcdc8c999 08a20b374b3c 000000000000

10 27 5343 939 27 2364 71c45066973e 000000000000 000000000000

11 28 6282 330 27 2365 6a400d9ae4ca 71c45066973e 000000000000

12 29 6612 148 27 2366 2099b1e5861e 6a400d9ae4ca 000000000000

13 30 6760 117 27 2367 87ff382bce0b 2099b1e5861e 000000000000

14 31 6877 225 27 2368 5a7fc5d81ff8 87ff382bce0b 000000000000

15 32 7102 1380 27 3507 1e5e927aa2c3 9c4fcdc8c999 000000000000

16 33 8482 277 27 3689 eea77300976c 1e5e927aa2c3 000000000000

17 34 8759 79 27 3847 3c643b91e14c eea77300976c 000000000000

18 35 8838 188 35 3935 e4907aefc8dd 3c643b91e14c 000000000000

19 36 9026 72 35 8936 a1f3120a2019 e4907aefc8dd 000000000000

20 37 9098 16 35 9595 57d6f1e057cd a1f3120a2019 000000000000

21 38 9114 12 35 9596 8b836c38b9e9 57d6f1e057cd 000000000000

This data model allows to read a specific version of a file from a snapshot
and few deltas. Another advantage is, that in case of repository corruption
it is still possible to reconstruct the contents of files.

If a user requests revision 38 (or id 8b836c38b9e9) of the ‘README’ file,
whose filelog index is shown in Listing 4.19, Mercurial will read the fully
stored snapshot (rev 35, id e4907aefc8dd) from offset 8838 with a length
of 188 plus all deltas up to and including offset 9126 (9114 + 12) from the
datafile of this filelog (‘.hg/store/data/ r e a d m e.d’). This results in
one sequential read from the hard drive for each of both the index and data
file.

Its storage model can be compared to modern video compression algo-
rithms. Each version (either a frame or a changeset) is stored as a delta to its
previous state. After a given threshold a full snapshot of the data is stored,
which in video compression relates to a keyframe.

Merges in Mercurial are recorded in all three forms of a revlog: revision,
manifest and file.

4. Distributed Version Control 37

Other objects

Tags in Mercurial are stored in the ‘.hgtags’ file. It lives in the project root
like any other tracked file. Each line contains the full 40 char SHA1 of a
changeset and after a whitespace the name of the tag.

Commit signatures are stored inside the ‘.hgsigs’ file. Each line contains
the full SHA1 of the signed changeset, the signature version and the base-64
encoded signature.

Chapter 5

Comparison of Distributed
Version Control Systems

5.1 Testing Scenario

Shell scripts were used to create a repository for each system in a sandbox
directory and to perform common operations, measuring runtime with the
time command. Each test was executed 10 to 1000 times and logged to a file.
The arithmetic average of the measured values is shown in the diagrams below.
Statistical dispersion of the results was negligible. Output (both ‘stdout’
and ‘stderr’) was redirected to ‘/dev/null/’ to eliminate additional costs
of displaying the output in the terminal.

Tested operations include initialization of an empty repository, cloning
of projects, adding files, committing files and displaying history logs for the
project, a subdirectory and a single file.

5.2 Results

All tests were performed on a 32-bit Ubuntu 10.10 alpha 3 system with
4 GB RAM and a Core2Duo T9300@2.50GHz with the latest release of each
version control system.

All figures use the name of each system’s binary as labels (Bazaar: bzr,
Mercurial: hg, Subversion: svn). Units are written using the SI-Prefixes, but
are actually base 2.

38

5. Comparison 39

Figure 5.1: Repository size for ‘django’ and ‘neo’ repository

(a) ‘django’ repository

bz
r gi

t hg

gi
t
(u

np
ac

ke
d) sv

n
0

50

100

150

55 54

134

92 85

S
iz

e
[M

B
]

(b) ‘neo’ repository

bz
r gi

t hg

gi
t
(u

np
ac

ke
d) sv

n
0

50

100
100

84

110 106
92

S
iz

e
[M

B
]

Repository Size

Repository size for each system was measured (using du -sh on the reposito-
ry/branch directory). The size of git repositories was measured before and
after running git gc --aggressive. git gc is used to compress loose objects
into a packfile. Bazaar and Mercurial do not provide such a mechanism.

Disk consumption of Subversion was measured for a single checkout
including metadata. The size of the checkout is comparable to the repositories
of the distributed systems, even though it does not include the complete
history of the projects. The working directory accounts for 42 MB in case of
the ‘neo’ repository and for 29 MB for the ‘django’ repository. Plots of disk
space consumption are shown in Figure 5.1.

Log

Time was measured to display the history log of all revisions for a project, a
subdirectory of a project or a single file in a repository. The django project
contains 8651 commits, of which 5569 commits touch files inside the ‘django’
subdirectory. The ‘AUTHORS’ file was modified 461 times in the history of the
project.

Very noticeable is the great margin between Bazaar and the other systems
when running log on a subdirectory. The fact that it takes Bazaar more than
six minutes to display the log of a subdirectory is probably due to a flaw in
its log implementation. The exact times of the different log operations can
be seen in Figure 5.2.

5. Comparison 40

Figure 5.2: Measured times to run log command

bzr git hg
0

1

2

3

1.831

0.191

2.395

T
im

e
[s

]

(a) for django project

bzr git hg
0

200

400

600
487.965

0.336 2.02
T

im
e

[s
]

(b) for ‘django’ subdirectory

bzr git hg
0

0.2

0.4

0.6

0.462

0.168 0.154T
im

e
[s

]

(c) for ‘AUTHORS’ file

Branching and Merging

Branching was tested with Git and Mercurial, because Bazaar does not
provide the same concept of local branches. Creating branches was almost
instant with both tested systems (0.04 seconds with mercurial and not
measurable for git, i. e. 0 s)

Time to perform the first merge of a simple feature branch back into
mainline (143 commits on mainline, 18 commits on the branch) was bench-
marked using the ‘django’ repository. Again, these tests were only performed
with Git and Mercurial, because Bazaar does not allow local branches. Git
needed 0.065 s to merge the branch and Mercurial performed the same merge
in 0.308 s.

5. Comparison 41

Figure 5.3: Measured times to run status command

bzr git hg
0

0.1

0.2
0.204

0.02

0.082T
im

e
[s

]

(a) unmodified django project

bzr git hg
0

0.1

0.2 0.195

0.053

0.182

T
im

e
[s

]

(b) unmodified ‘django’ subdirec-
tory

bzr git hg
0

0.05

0.1

0.15

0.2
0.165

0.01

0.062T
im

e
[s

]

(c) unmodified ‘AUTHORS’ file

Status

Time to display status for a project, a subdirectory or a single file, was
measured in an unmodified repository. There is no big difference between the
analyzed systems. This command, which is one of the most used commands,
runs in less than 0.2 s in all systems. The results can be seen in Figure 5.3.

Diff

The time it took the systems to display the diff in an unmodified working
directory, for the whole project, a subdirectory and a single file are shown in
Figure 5.4. Git is faster by a wide margin, especially for the whole project
and single files, because it can compare the hashes of the objects with the
hash from the repository.

5. Comparison 42

Figure 5.4: Measured times to run diff command

bzr git hg
0

0.1

0.2

0.3
0.249

0.0005

0.081T
im

e
[s

]

(a) in unmodified django project

bzr git hg
0

0.1

0.2
0.213

0.098
0.072T

im
e

[s
]

(b) on unmodified ‘django’ subdi-
rectory

bzr git hg
0

0.05

0.1

0.15

0.2

0.159

0.00049

0.061T
im

e
[s

]

(c) on unmodified ‘AUTHORS’ file

Clone

The time it takes to create a full local clone from an existing repository.
Cloning is necessary in Bazaar to create branches. Git and Mercurial use by
default hardlinks when possible, to cut down on real disk space consumption.
Times range from 33.7 s to 1.5 s and can be seen in Figure 5.5.

Add and Commit

Adding and committing files is one of the most commonly used operations
in the daily use of version control. Multiple add operations usually proceed
the commit operation. The following test added a single file with 1 MB and
then created a commit.

Git follows a different philosophy when adding files and creating commits.
Git immediately writes the file contents and the tree description to its
database during add, while Bazaar and Mercurial only record metadata to

5. Comparison 43

Figure 5.5: Creating a local clone of the django repository

bzr git hg
0

10

20

30

40

32.731

1.523

6.723

T
im

e
[s

]

Figure 5.6: Adding and committing a 1 MB file

bzr git hg
0

0.1

0.2

0.3

0.4
0.346

0.0705

0.141T
im

e
[s

]

add
commit

mark it for committing. Bazaar and Mercurial then write the file during
commit, whereas Git only needs to write the commit object with a pointer
to the tree description. The results are shown stacked in Figure 5.6.

This divergence can be seen more clearly in the following graphs which
plot runtime depending on the size, respectively number, of files.

Filesize Dependency

Runtime of commit and add is shown in Figure 5.7, increasing the file of the
committed file by 50 kB with each run. Git writes the object during the add
phase, which is clearly visible in the plot. Bazaar and Mercurial add files of
different sizes in constant time, as they only need to record metadata.

5. Comparison 44

Figure 5.7: Filesize and time dependency

(a) during add

0 100 200 300
0

0.5

1

1.5

filesize in 50 kB steps

T
im

e
[s

]

bzr git hg

(b) during commit

0 100 200 300
0

1

2

filesize in 50 kB steps
T

im
e

[s
]

bzr git hg

During the commit phase the opposite is the case. Git creates all commits
in the same time, regardless of the commits size. Times of Bazaar and
Mercurial increase proportionally with the size of the commit, although
Mercurial shows a big increase after 230 steps (11.5 MB).

Treesize Dependency

The next tests created commits with an increasing number of files in the
top level directory of the project. Each file was filled with 5 kB of random
data. Bazaar shows a clear dependence on the number of files, whereas Git
and Mercurial add up to 350 files in the same amount of time. Commit
times exhibit the same pattern as add times. Git and Mercurial can process
different tree sizes in constant time, while Bazaar’s time goes up as the
number of files increases. Both cases are shown in Figure 5.8.

Dependency on History Length

Distributed version control systems should handle projects with long his-
tory without problems. It is important, that the systems show little or no
dependence on the length of history (number of commits). All three of the
analyzed systems performed very well in this test and show no significant
signs of degrading performance with growing repositories (tested for up to
25000 commits). The graphs in Figure 5.9 show the add and commit times
for 500 commits.

5. Comparison 45

Figure 5.8: Treesize and time dependency

(a) during add

0 100 200 300
0

0.1

0.2

number of files (5 kB each)

ti
m

e
[s

]

bzr git hg

(b) during commit

0 100 200 300
0

0.2

0.4

0.6

number of files (5 kB each)

T
im

e
[s

]

bzr git hg

Figure 5.9: Time depending on number of history length

(a) during add

0 200 400
0

0.1

0.2

number of commits

ti
m

e
[s

]

bzr git hg

(b) during commit

0 200 400
0

0.1

0.2

0.3

number of commits

ti
m

e
[s

]

bzr git hg

Chapter 6

Conclusion

Bazaar is the right choice, if a user does not want to completely switch to a
distributed workflow, because it allows binding working copies to branches
and directly committing to a common branch. Earlier repository formats of
Bazaar were not very efficient and used a lot of disk space, but with the new
format-2a format it often comes close to the size of packed git repositories.
Bazaar is the only distributed version control discussed in this thesis, which
is able to track empty directories.

Git and Mercurial use a history model which allows easy signing of a
commit and all preceding history of that commit. This is as secure as the
underlying hash function which is SHA1 for both Git and Mercurial. If SHA1
gets broken, these systems have to use a different repository format which
will not be backward compatible – existing repositories would have to be
converted to use the new hash function. Signatures in Bazaar do not take
history into account and only sign the current state of the project.

Git is the clear winner when it comes to performance, which can be
explained by its native implementation in C. While other systems were specif-
ically designed to work on many platforms (using an interpreted language),
Git first worked only on POSIX compliant systems, but recently ports for
Microsoft Windows emerged1.

Git had unique features, of which most are now available as plugins for
other systems (rebasing, cherry-picking).

Distributed version control systems often perform worse than central-
ized version control systems when versioning (big) binary files, because the
complete history of each file has to be transmitted; furthermore, binary files
often exhibit bad delta compression behavior. Bazaar’s bound branches and
centralized workflow model provide an alternative.

All systems allow import or export from other systems, so most reposito-
ries can be converted without problems. Bazaar, Git and Mercurial provide

1MSYSgit, git extensions and TortoiseGit to name a few

46

6. Conclusion 47

Subversion wrappers or importers which allow read and write access to
subversion repositories.

Bazaar allows lossless conversion from other formats due to its repository
format: Commit and file ids can be set arbitrarily and can often use the
original commit ids (or revision numbers when working with Subversion).

Bibliography

[Bang-Jensen and Gutin, 2008] Bang-Jensen, J. and Gutin, G. (2008). Di-
graphs: Theory, algorithms and applications. Springer Verlag.

[Baudǐs, 2009] Baudǐs, P. (2009). Current Concepts in Version Control
Systems. Bachelor’s thesis, Prague, Czech Republic.

[Canonical Ltd., 2005] Canonical Ltd. (since 2005). Bazaar source code
(https://code.launchpad.net/∼bzr-pqm/bzr/bzr.dev). Canonical Ltd.

[Chacon, 2009] Chacon, S. (2009). Pro Git. Apress, 1st edition.

[Fogel, 2005] Fogel, K. (2005). Producing Open Source Software: How to
Run a Successful Free Software Project. O’Reilly Media, Inc.

[Hunt and McIlroy, 1976] Hunt, J. W. and McIlroy, M. D. (1976). An algo-
rithm for differential file comparison. Technical Report CSTR 41, Bell
Laboratories, Murray Hill, NJ.

[Loeliger, 2009] Loeliger, J. (2009). Version Control with Git: Powerful Tools
and Techniques for Collaborative Software Development. O’Reilly.

[Mackall, 2006] Mackall, M. (2006). Towards a better SCM: Revlogs and
Mercurial. In Proceedings of the Linux Symposium, pages 91–98, Ottawa,
Ontario, Canada. Citeseer.

[O’Sullivan, 2009] O’Sullivan, B. (2009). Mercurial: The Definitive Guide.
O’Reilly.

[Pilato et al., 2004] Pilato, C. M., Collins-Sussmann, B., and Fitzpatrick,
B. W. (2004). Version Control with Subversion. O’Reilly.

[Schneier, 1996] Schneier, B. (1996). Applied Cryptography, Second Edition:
Protocols, Algorithms, and Source Code in C. John Wiley & Sons, Inc.

[Swicegood, 2008] Swicegood, T. (2008). Pragmatic Version Control Using
Git. Pragmatic Bookshelf.

[Vesperman, 2003] Vesperman, J. (2003). Essential CVS. O’Reilly.

48

https://code.launchpad.net/~bzr-pqm/bzr/bzr.dev

List of Figures

4.1 Centralized development model 18
4.2 Distributed development model 19
4.3 Distributed development model in combination with server . 19
4.4 Directed acyclic graph representing history of a project . . . 21
4.5 Lines of code (Bazaar) . 22
4.6 Lines of code (Git) . 27
4.7 Lines of code (Mercurial) . 32

5.1 Repository size for ‘django’ and ‘neo’ repository 39
5.2 Measured times to run log command 40
5.3 Measured times to run status command 41
5.4 Measured times to run diff command 42
5.5 Creating a local clone of the django repository 43
5.6 Adding and committing a 1 MB file 43
5.7 Filesize and time dependency 44
5.8 Treesize and time dependency 45
5.9 Time depending on number of history length 45

49

Listings

2.1 Patch file in contextual diff format 8
2.2 Patch file in unified diff format 9
2.3 A semantic merge conflict . 10
2.4 A typical conflict with conflict markers 11
4.1 SHA1 example . 21
4.2 Revision ids starting at r5410 24
4.3 Bencoded data of a revision 24
4.4 Inventory for r5410 . 25
4.5 Long testament for r5430.1.2 25
4.6 Signature of r5430.1.2 . 26
4.7 An octopus merge commit . 28
4.8 Specifying parents . 29
4.9 Commit 05a59a0 . 29
4.10 The tree 358d4a3 . 30
4.11 ‘Documentation’ subtree . 30
4.12 Content of blob 4f19045 . 30
4.13 Annotated tag v1.7.2 with signature 31
4.14 Changelog index . 34
4.15 Data of changelog entry 39e7f14a8286 34
4.16 Data of manifest ffd1749b3205 (column delimiters added for

clarity) . 34
4.17 Filelog of ‘CONTRIBUTORS’ . 35
4.18 Data stored in nodeid 7c8afb950174 35
4.19 Index of ‘README’ file . 36

50

	Abstract
	Kurzfassung
	Introduction
	Motivation
	Goals
	Content

	Version Control in General
	Workflows
	Foundations
	Glossary
	Repository
	Working Directory
	Diff and Patch
	Merge
	Mainline, Branches and Tags

	Centralized Version Control
	Tools
	CVS
	Subversion

	Distributed Version Control
	Differences
	Concepts
	Revision identifiers
	Integrity
	History representation

	Tools
	Bazaar
	Git
	Mercurial

	Comparison
	Testing Scenario
	Results

	Conclusion

