
Fachhochschul-Masterstudiengang

SOFTWARE ENGINEERING
4232 Hagenberg, Austria

Cross-Platform Desktop Application
Development with .NET and Mono

Masterarbeit

zur Erlangung des akademischen Grades
Master of Science in Engineering

Eingereicht von

Daniel KNITTL-FRANK, BSc

Begutachter: Prof. (FH) DI Dr. Stefan WAGNER

September 2012

Declaration

I hereby declare and confirm that this thesis is entirely the result of my
own original work. Where other sources of information have been used, they
have been indicated as such and properly acknowledged. I further declare
that this or similar work has not been submitted for credit elsewhere.

Hagenberg/Mühlkreis, September 3, 2012

Daniel Knittl-Frank, BSc

ii

Contents

Declaration ii

Abstract vi

Kurzfassung vii

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 2
1.3 Content . 3

2 Common Language Infrastructure (CLI) 4
2.1 Common Type System (CTS) 5
2.2 Metadata . 5
2.3 Common Language Specification (CLS) 6
2.4 Virtual Execution System (VES) 7
2.5 Common Intermediate Language (CIL) 7
2.6 Profiles . 8
2.7 Supported Languages . 10

2.7.1 C# . 10
2.7.2 Visual Basic.NET . 10
2.7.3 Managed Extensions for C++ 11
2.7.4 F# . 11
2.7.5 Other Supported Languages 11

3 CLI Implementations – .NET and Mono 12
3.1 .NET . 12

3.1.1 Version History of .NET 12
3.1.2 Visual Studio . 15
3.1.3 SharpDevelop . 16

3.2 Mono . 16
3.2.1 Compiler . 17
3.2.2 Runtime . 17
3.2.3 Libraries . 19

iii

Contents iv

3.2.4 MonoDevelop . 19
3.3 Other Implementations . 20

3.3.1 Microsoft .NET Compact Framework 21
3.3.2 DotGNU Portable.NET 21
3.3.3 Open CLI Library . 21
3.3.4 Shared Source CLI . 21

4 Shortcomings and Incompatibilities 23
4.1 Mono Migration Analyzer (MoMA) 24
4.2 Windows Communication Foundation 25
4.3 Windows Presentation Foundation 26

4.3.1 XAML . 27
4.4 Windows Workflow Foundation 27
4.5 Windows Forms . 28

4.5.1 Charting . 28
4.6 Windows Registry . 29
4.7 Security . 30
4.8 Platform Invoke . 31
4.9 Case Sensitive File Systems 32
4.10 Compiling Files and Building Projects 33
4.11 Unit Tests . 34
4.12 Internals . 35

5 Case Study – HeuristicLab 3.3 37
5.1 About HeuristicLab . 37
5.2 Architecture . 40

5.2.1 External Libraries . 40
5.3 Required Packages . 42

5.3.1 Building Mono . 43
5.4 MoMA Report . 43
5.5 Necessary Changes . 45

5.5.1 Fixing Platform Dependencies 45
5.5.2 Missing Charting Library 47
5.5.3 Unit Tests . 48
5.5.4 Persistence Layer . 49

5.6 Remaining Issues and Future Tasks 51
5.6.1 ZedGraph Charting Library 51
5.6.2 HeuristicLab Hive . 52
5.6.3 Windows Forms . 52

5.7 Performance Analysis . 53
5.7.1 Results . 54
5.7.2 Bottlenecks . 68
5.7.3 Result Summary . 70

Contents v

6 Outlook and Conclusion 74
6.1 Status and Future of HeuristicLab for Mono 76

Abstract

This thesis introduces the concepts and ideas behind the Common Language
Infrastructure standard, specified by ISO/IEC and Ecma, and its associated
problems when used for cross-platform application development. Two popu-
lar implementations of the CLI standard are the .NET Framework from Mi-
crosoft and the open-source project Mono which is maintained by Xamarin.
In addition, the paper identifies potential incompatibilities and common
problem areas in applications intended to run across different platforms.

In the second part of the thesis, the experience gained in the first part
is applied to an existing project, the meta-heuristic optimization framework
HeuristicLab. Eventually, a working proof-of-concept prototype of Heuristic-
Lab is presented which can be compiled and executed on different platforms.
This prototype is then used to compare the performance of HeuristicLab un-
der the Mono and .NET Framework when applying heuristic algorithms to
optimization problems.

vi

Kurzfassung

Diese Masterarbeit stellt die Konzepte und Ideen des von ISO/IEC und Ec-
ma spezifizierten Common Language Infrastructure Standards und damit
verbundene Probleme bei der Entwicklung von

”
Cross-Platform“-Anwen-

dungen vor. Zur Zeit existieren zwei gängige Implementierungen dieses Stan-
dards, .NET von Microsoft und das Open-Source Projekt Mono. Nachdem
die Grundlagen erörtert wurden, werden potenzielle Inkompatibilitäten und
häufige Probleme von Anwendungen, welche auf unterschiedlichen Plattfor-
men ausgeführt werden sollen, identifiziert und aufgezeigt.

Der zweite Teil der Arbeit beschäftigt sich mit dem HeuristicLab-Projekt
für metaheuristische Optimierungsaufgaben und wendet die Erfahrungen
aus dem ersten Teil praktisch an. Schließlich wird ein funktionierender Proto-
typ von HeuristicLab präsentiert, welcher auf unterschiedlichen Plattformen
kompiliert und ausgeführt werden kann. Dieser Prototyp wird anschließend
verwendet, um die Laufzeiten heuristischer Algorithmen bei der Anwendung
auf Optimierungsaufgaben unter Mono und dem .NET Framework zu ver-
gleichen.

vii

Chapter 1

Introduction

1.1 Motivation

Microsoft .NET allows developers to write applications that are indepen-
dent of the actual hardware architecture by executing them in a virtual
machine. It was introduced by Microsoft in early 2002 and later standard-
ized by ISO/IEC and Ecma International as Common Language Infrastruc-
ture (CLI). Many features ease application development, such as automatic
memory management and a rich set of class libraries. Numerous compilers
for different source languages exist and developers can write applications
in any of these languages. Popular source languages for .NET include C#,
Visual Basic.NET, and F#.

.NET originally ran only on Windows operating systems. The Mono
project is an effort to bring the power of .NET to other operating systems
besides Windows, such as Linux and Mac OS. It provides a managed run-
time environment to run .NET applications, compilers for several source
languages, and implementations of the core class libraries.

With Linux’ high market share in scientific and high performance com-
puting environments1, as well as its increasing market share on desktop
systems and mobile devices, it only makes sense to leverage .NET’s features
on Linux operating systems.

Using different implementations of the CLI does not come without com-
plications. Common problems shall be identified and solutions shall be pre-
sented as part of this thesis. A case study is conducted to test the practica-
bility of adapting a real-world .NET application. Subject matter of the case
study is the HeuristicLab framework.

HeuristicLab is a highly modular framework to tackle heuristic optimiza-
tion problems of all sorts. The project was started in 2002 at the Johannes
Kepler University Linz [38]. The latest released version is HeuristicLab 3.3.7,
which was released on July 8, 2012.

1http://i.top500.org/overtime, TOP500 Statistics

1

http://i.top500.org/overtime

1. Introduction 2

While several other frameworks exist in the field of heuristic optimiza-
tion, few of them fulfill requirements with regard to ease of learning, flex-
ibility, user experience, etc. A detailed analysis and comparison of existing
software solutions can be found in several papers [38, 30].

When the HeuristicLab project was started, it was decided to use the
Microsoft .NET Framework as a runtime basis. The primary reason for this
decision at that time was a well integrated GUI framework, whereas Java
did not provide a solid GUI framework. Compatibility with distinct imple-
mentations of the CLI was not a concern when the project was started,
and HeuristicLab currently only executes under .NET on Windows operat-
ing systems. To reach a broader user base, it is therefore necessary for the
HeuristicLab environment to be compatible with the Mono project.

1.2 Goals

Over the course of this thesis three main goals are pursued. To begin with,
different implementations of the CLI, foremost .NET and Mono, are ana-
lyzed and compared with each other. Key differences are highlighted and
missing features are listed.

Secondly, common problems are identified that appear when convert-
ing a .NET application to be compatible with the Mono platform. General
guidelines and solutions have to be found where applicable. Furthermore,
applications which cannot be ported without an extraordinary effort of the
application developers should be identified early on to save time and money.

Finally, a case study is presented in which the HeuristicLab environment
is adapted so that it compiles and runs in the Mono environment on Linux.
While Mono provides a good and stable basis for running .NET applications
on a variety of operating systems, there are still some bugs and deviant be-
havior compared to Microsoft .NET. The case study helps to discover and
identify bugs in Mono, which detain developers from running their applica-
tions with the Mono runtime. These bugs have to be worked around on the
client side (HeuristicLab) or fixed directly in the runtime (Mono), either by
writing patches or simply reporting the bugs back to the Mono development
team.

Developers should be able to build HeuristicLab on Linux with the tools
provided by Mono and run it with the Mono runtime on at least Linux and
Windows systems, in addition to the current .NET runtime.

This thesis deals with version 3.3.6 of HeuristicLab, released in Jan-
uary 2012. A branch of HeuristicLab 3.3.6 has been created in its source
code repository2 to act as an isolated work space to re-write parts of Heu-
risticLab’s source code to support more environments. These changes will
eventually get merged to the project’s main line of development.

2http://dev.heuristiclab.com/svn/hl/core/branches/HeuristicLab.Mono/

http://dev.heuristiclab.com/svn/hl/core/branches/HeuristicLab.Mono/

1. Introduction 3

1.3 Content

This thesis is divided into six chapters. The first chapter contains the intro-
duction and defines the motivation and goals of this thesis.

The second chapter discusses the relevant aspects of the Common Lan-
guage Infrastructure (CLI) – including the Common Type System (CTS),
Common Language Specification (CLS), Common Intermediate Language
(CIL), and Base Class Library (BCL) – as standardized by the International
Organization for Standardization (ISO) and International Electrotechnical
Commission (IEC) in ISO/IEC 23271 [20] and by Ecma International in
ECMA-335 [11]. The chapter ends with a presentation of popular languages
used in the context of the CLI.

There are two popular implementations of the CLI, namely the .NET
Framework from Microsoft and the open-source project Mono from Xamarin.
An overview of the characteristics of each runtime is given in Chapter 3, with
a strong focus on the Mono project. Other implementations of the standard
are briefly presented as well.

The next chapter highlights differences and incompatibilities between
the two implementations. It concentrates on missing classes from the class
libraries and deviating behavior in existing classes. The toolchain for writ-
ing and building .NET applications is different when using Mono. Important
aspects include the compiler, IDE (Integrated Development Environment)
and related tools (build scripts, unit tests, . . .). One of the motivations of
executing HeuristicLab under Mono is the ability of Mono to run on operat-
ing systems besides Microsoft Windows, specifically on Linux distributions
such as Ubuntu.

Chapter 5 presents a case study. The HeuristicLab framework for heuris-
tic and evolutionary algorithms is modified to be able to compile with the
Mono toolchain and to run under the Mono runtime. The chapter concludes
with a performance analysis of Microsoft .NET, Mono on Linux, and Mono
on Windows.

This thesis concludes with an outlook of the future of Mono and the
HeuristicLab framework in the last chapter.

Chapter 2

Common Language
Infrastructure (CLI)

This chapter summarizes the most important aspects of the Common Lan-
guage Infrastructure. The first version of ISO/IEC 23271 was published in
2003 [18], the third and current revision of the standard was published in
February 2012 [20]. The CLI is described as:

“This International Standard defines the Common Language In-
frastructure (CLI) in which applications written in multiple high-
level languages can be executed in different system environments
without the need to rewrite those applications to take into con-
sideration the unique characteristics of those environments.” [20]

The CLI consists of four main parts which are covered in more detail in
this chapter [20]:

� The Common Type System (CTS) aims to provide a rich set of
types and operations for supporting a wide range of different program-
ming languages.

� Metadata is used by the CLI to describe types from the Common
Type System. It is independent from source languages and provides a
common interchange mechanism.

� The Common Language Specification (CLS) is a subset of the
CTS. Languages should at least support the features specified by the
CLS to allow users to access frameworks.

� The Virtual Execution System (VES) is responsible for loading
and running programs written for the CLI.

4

2. Common Language Infrastructure (CLI) 5

2.1 Common Type System (CTS)

The Common Type System (CTS) provides a rich set of types and supported
operations on these types. It supports types of procedural, object-oriented
and functional programming languages. These three paradigms require dif-
ferent entities, values and objects. The relationship between types is dis-
played in Figure 2.1.

Values are blocks of bits representing simple scalar data; examples of
values are integer and float values. A value type describes the concrete bit
pattern used to store a type and the operations which can be performed on
that value representation. Every value type has a matching reference type,
a so-called boxed type.

Objects in the CTS explicitly store their type in their representation.
Every object is distinguishable from all other objects through its identity.
Other objects and values are stored in slots which can be changed and re-
assigned. The identity of an object is always immutable and not affected by
the actual values of slots.

Families of types and methods can be defined by using the provided
generics feature of the CTS. This feature is independent of the source lan-
guage. Generic types can be used in place of normal CLI types, if context
permits. Generic types are statically checkable and thus can be validated and
verified (see the next sections for details). Generic interfaces and delegates
allow generic parameters to be used in covariant or contravariant position.
Source languages with no support for variance can simply ignore variant in-
formation on parameters and behave as if the parameters were non-variant
parameters.

2.2 Metadata

Metadata is used to represent information which the CLI requires during
execution. This information includes the way classes are loaded, how memory
is laid out, how methods are invoked, and more [20]. Type declarations for
the CTS are expressed in metadata as well.

Since each CLI component has its specific metadata directly attached,
a component in CLI is self-describing. Metadata belonging to a component
is called component metadata. Metadata can be accessed through the Re-
flection library or directly through the file format which is described in the
CLI standard. For an in-depth explanation of specification details refer to
Partition II of the Common Language Infrastructure [20].

Metadata enables a conforming CLI implementation to perform a num-
ber of tests to validate and verify CIL (presented in Section 2.5). Validation
tests ensure the self-consistency of the file format, metadata and CIL. Be-
havior of a CLI implementation is unspecified, if presented with a file which

2. Common Language Infrastructure (CLI) 6

Type

Value Types

Built-in Value Types

Integer Types

Floating Point Types

Typed References

User Defined

Enums

Reference Types

Self-Describing

Name Equivalent

Delegates

Boxed Value Types

Boxed Enum

Structural Equivalent

Arrays

Interface Pointer

Function

Managed

Unmanaged

Built-In Reference Types

String

Object

Figure 2.1: Common Type System [20]

did not pass the validation test. Verification ensures that CIL instructions
only access memory inside the program’s address space [15]. The complete
list of rules for verifiable CIL instructions can be found in Partition III of
the CLI standard [20]. Code might be type-safe, but cannot be proven to
be so by the simple verification algorithm of the VES. A conforming CLI
implementation is allowed to execute unverifiable code, but might impose
additional security controls that are not covered by the standard. The rela-
tionship of verifiable and correct CIL is shown in Figure 2.2.

2.3 Common Language Specification (CLS)

The Common Language Specification (CLS) is a set of rules to benefit in-
teroperability of different source languages used with the CLI. Types for
execution on a CLI implementation must conform to the CLI standard
and CLS rules. The complete list of rules can be found in Partition I of
ISO/IEC 23271 [20]. Only types visible outside their containing assembly
must adhere to these rules.

The CLI standard refers to libraries consisting of CLS-compliant code
as framework. Compilers which only consume frameworks are referred to as
consumers, those that extend frameworks are referred to as extenders.

2. Common Language Infrastructure (CLI) 7

Syntactically correct

Valid

Typesafe

Verifiable

Figure 2.2: Validation and Verification of CIL [20]

2.4 Virtual Execution System (VES)

The Virtual Execution System (VES) provides an environment for executing
managed code. It provides the infrastructure to execute the CIL instruction
set and defines a hypothetical state machine. The CIL instruction set is
discussed in the next section.

The VES directly supports a number of data types, mainly different in-
teger types (signed and unsigned, ranging from 8 bit to 64 bit), and 32 bit
and 64 bit IEC 60559:1989 floating point numbers. Additionally, native ob-
ject references and pointers are supported which must point into managed
memory. Direct support means that these types can be modified with CIL
instructions. These types are referred to as the basic CLI types [20].

The CLI uses a stack to evaluate its intermediate language and allows
only a subset of the listed types to be used on the stack: int32, int64 and
native int – other integer types are widened and narrowed as required when
pushed to or loaded from the stack. The reason behind this is that it sim-
plifies compilation from CIL to native code, because compilers only need to
track a small number of types internally.

2.5 Common Intermediate Language (CIL)

The VES runs an instruction set which is known as Common Intermedi-
ate Language (CIL). In the CLI implementation by Microsoft, it is also re-
ferred to as MSIL (Microsoft Intermediate Language). IL Instructions only
deal with the aforementioned basic CLI types (int32, int64, native int,
native float, object reference, native pointer). Each instruction has a
predefined evaluation stack transition diagram associated as well as a list
of exceptions that can be thrown by that specific instruction. The standard

2. Common Language Infrastructure (CLI) 8

Source code: C#,
Visual Basic.NET,

F#

Intermediate
Language (IL)

Platform-specific
machine code

compile JIT

Figure 2.3: Two Step Compilation Model [31]

describes conditions for the verifiability and correctness of each instruction
plus its prefixes in clauses 2 through 4 of Partition III [20].

As discussed in Section 2.2 (Metadata), it is important that applications
only access their own address space. CIL is tested for verifiability (the in-
nermost area in Figure 2.2), since it is not possible to reliably test memory
and type safety of an application. An example of a non-verifiable operation
is pointer arithmetic which is required for C programs. The algorithm used
to test verifiability of IL instructions is explained in-depth in subclause 1.8
of Partition III of the Common Language Infrastructure [20].

Every IL instruction starts with an opcode which is one or more bytes
long. Opcodes are followed by a variable number of operands for this in-
struction. In the current version of the standard opcodes occupy either one
or two bytes, and all multi-byte opcodes start with 0xFE. First bytes in the
range 0xF0 through 0xFB are not used by the standard and may be used
for experimental purposes. However, if the first byte of an opcode is in the
range 0x00 through 0xEF or 0xFC through 0xFF, then these opcodes are re-
served for later standardization. A list of available opcodes can be found in
ISO/IEC 23271 [20].

The CLI uses a two step compilation model: Source code is first compiled
to IL byte code, and IL is then efficiently compiled to native machine code
when executed by the VES. Implementations need not use JIT compilation
and could use an interpreter to execute IL directly instead. The diagram in
Figure 2.3 shows the steps and code states involved in this procedure.

2.6 Profiles

ISO/IEC 23271 defines two standard profiles [20]. A profile specifies the
minimum amount of features and libraries that a conforming implementa-
tion of the CLI must provide. The smallest profile is the Kernel Profile which
is targeted at low end devices. The Compact Profile contains additional use-
ful features, such as XML, networking, and reflection libraries. Conforming
implementations of the CLI shall specify which profiles they implement and
which libraries they support.

Seven Standard Libraries are specified in addition to the profiles. Run-
time Infrastructure Library, Base Class Library, XML Library, Network Li-

2. Common Language Infrastructure (CLI) 9

Kernel Profile

Compact Profile

Base Class Library

Runtime Infrastructure Library

Network
Library

XML
Library

Reflection
Library

F
lo

at
in

g
P

o
in

t
L

ib
ra

ry

E
x
te

n
d

ed
A

rr
ay

L
ib

ra
ry

P
ar

al
le

l
L

ib
ra

ry

Figure 2.4: CLI Libraries and Profiles [20]

brary and Reflection Library are part of the standard profiles. Provided,
but not part of the standard profiles are the Floating Point Library, the
Extended Array Library and the Parallel Library. The relationship between
standard profiles and standard libraries is depicted in Figure 2.4.

The Kernel Profile only contains the Runtime Infrastructure Library and
Base Class Library. It does not contain the Floating Point Library. Other
features missing from the Kernel Profile are non-vector arrays, reflection, ap-
plication domains, remoting, variable argument lists, dynamically extending
a stack frame (frame growth) and filtered exceptions. The Compact Profile
is a superset of the Kernel Profile plus XML Library, Network Library, and
Reflection Library.

The standard explicitly allows implementations to extend the standard
libraries with custom functionality. It restricts modifications by a set of rules
to keep programs portable between different implementations. In particular,
these rules permit or prohibit the following [20]:

� Contracts of virtual methods shall be maintained when overriding.

� New exceptions can be introduced and thrown by methods. However,
these methods should extend System.Exception.

� Existing interfaces shall not be extended with additional interfaces or
virtual methods.

� Access rules to members of a type can be more permissible than spec-
ified. The standard only specifies a minimum accessibility.

� Instance methods shall not be implemented as virtual methods. This
improves portability of libraries, as it prevents the usage of implemen-
tation specific libraries during compile time.

2. Common Language Infrastructure (CLI) 10

2.7 Supported Languages

The Common Language Infrastructure is independent of source languages, as
long as a compiler exists which transforms the source language into Interme-
diate Language. This chapter gives a short overview of languages commonly
used in connection with the CLI. The rest of this thesis mainly focuses on
the C# source language.

2.7.1 C#

C# is a modern, general-purpose, object-oriented, strongly-typed program-
ming language. C# was developed by Microsoft and is specified in the stan-
dards ISO/IEC 23270 and ECMA-334 [19, 12]. The syntax resembles C and
C++, to make it easier for developers to learn the new language – the fa-
mous Hello World program implemented in C# can be seen in Listing 2.1.
Microsoft released its first implementation of the language in the year 2000.

Listing 2.1: C# Source Code Sample

1 using System;

2

3 public class HelloWorld {

4 public static void Main(string[] args) {

5 Console.Out.WriteLine("Hello World");

6 }

7 }

A conforming implementation of C# must provide types which map to
the Base Class Library of the Common Language Infrastructure, as well as
types for the Extended Numerics Library and Extended Array Library (cf.
Section 2.6). These types can be found in the reserved System namespace.

C# is compiled to Intermediate Language which is then executed by the
Virtual Execution System. This means C# inherits any benefits the Virtual
Execution System offers, including automatic memory management, true
generics, and exceptions.

2.7.2 Visual Basic.NET

Visual Basic.NET (often VB.NET) is a language designed by Microsoft and
based on the Visual Basic language. It provides the same feature set as C#.

Listing 2.2: Hello World with Visual Basic.NET1

1 Imports System

2

3 Public Module HelloWorld

4 Sub Main()

5 Console.WriteLine ("Hello World using Visual Basic!")

6 End Sub

7 End Module

2. Common Language Infrastructure (CLI) 11

2.7.3 Managed Extensions for C++

Managed Extensions for C++ is a source language strongly resembling the
classic C++ language. It extends the original C++ language with support for
automatic garbage collections.

Listing 2.3: Hello World with Managed Extensions for C++2

1 #using <mscorlib.dll>

2

3 using namespace System;

4

5 void main() {

6 Console::WriteLine(S"Hello World using Managed Extensions for C++!");

7 }

2.7.4 F#

F# is a newer source language, designed by Microsoft. Its compiler source
code is available under the open-source Apache 2.0 license3. F# provides
developers with a set of functional and imperative programming paradigms,
while still allowing access to all CTS types. With immutable data types, F#
enables programmers to develop concurrent and highly scalable systems.

Listing 2.4: Recursive Definition of the Fibonacci Number Function in F#

1 let rec fib n =

2 match n with

3 | 0 | 1 -> n

4 | _ -> fib (n - 1) + fib (n - 2)

2.7.5 Other Supported Languages

A large number of other source languages (and respective compilers) exist
for the Common Language Infrastructure. After compilation to IL, programs
can be run in any compliant implementation of the ISO/IEC 23271 standard.
The Mono website provides an extensive list of supported source languages4.
This list contains Boo, Nemerle, Python, and JavaScript, among others.
Easton and King have put together a list of languages and compilers for the
CLI and present them in Chapter 8 of their book [10]. Noteworthy is the
support of Java and Scala, both originally designed for the JVM, as source
languages targeting the Common Language Infrastructure.

1http://msdn.microsoft.com/en-us/library/aa309383.aspx, Hello World in Visual Basic
2http://msdn.microsoft.com/en-us/library/aa309382.aspx, Hello World in Managed Ex-

tensions for C++
3http://fsharppowerpack.codeplex.com, F# PowerPack: F# Extras, with F# Compiler

Source Drops
4http://www.mono-project.com/Languages

http://msdn.microsoft.com/en-us/library/aa309383.aspx
http://msdn.microsoft.com/en-us/library/aa309382.aspx
http://fsharppowerpack.codeplex.com
http://www.mono-project.com/Languages

Chapter 3

CLI Implementations – .NET
and Mono

The previous chapter introduced the concepts of the Common Language
Infrastructure, as specified in ISO/IEC 23271 and ECMA-335. There are
currently two popular implementations of this standard. The most popular
implementation of that standard is the proprietary Microsoft .NET Frame-
work. Mono is an effort to enable developers to use the Common Language
Infrastructure on platforms other than Microsoft Windows. Both implemen-
tations are discussed on the following pages.

3.1 .NET

.NET is a proprietary implementation of the Common Language Infrastruc-
ture standard (ISO/IEC 23271), described in the previous chapter. The
.NET Framework is developed and distributed by Microsoft. A beta ver-
sion of the .NET Framework was available in 2001, and version 1.0 was
released in 2002.

Microsoft’s implementation of the CLI consists of the Common Language
Runtime (CLR), and the Framework Class Library (FCL). The CLR is Mi-
crosoft’s implementation of the VES, responsible for executing IL; the FCL
is a superset of the BCL (Base Class Library).

3.1.1 Version History of .NET

This section gives a short overview of the different versions of the .NET
Framework and the most significant improvements compared to the preced-
ing version. The current release of the .NET Framework is version 4.0 and
a release candidate version of .NET 4.5 has been available for testing since
end of May 2012.

12

3. CLI Implementations – .NET and Mono 13

Release dates were aggregated from http://microsoft.com/download. In-
formation on specific versions was compiled from several MSDN articles1.

.NET 1.0 and .NET 1.1

.NET 1.0 was the first release of the .NET Framework which was released
in early 2002. It is no longer supported as of July 2009.

.NET 1.1 added complete IPv6 support and introduced some security
changes2. The .NET Compact Framework for mobile devices was first pro-
vided with this release. Part of .NET 1.1 was also a version bump of the
CLR to version 1.1. The new version of the CLR introduced side-by-side
execution which allows multiple versions of the CLR to be installed on the
same operating system. Applications can then choose the particular version
of the CLR with which they are executed.

.NET 2.0

The Microsoft .NET Framework 2.0 was released on January 22, 20063.
Version 2.0 of the framework was the first version to provide full 64 bit
support on the IA-64 and x86 hardware platforms.

The CLR received several updates and was upgraded to version 2.0.
.NET 2.0 introduced native generics support on the level of the CLR, as
described in Section 2.1. New collection classes which make use of the new
generics features were included with the Framework Class Library. Other no-
table new features of this release included partial class declarations, nullable
types, anonymous methods, and iterators.

With the .NET 2.0 release, Microsoft started shipping the Micro Frame-
work4, an even more stripped-down version than the .NET Compact Frame-
work. It targets devices with a 32 bit processor without an external memory
management unit and just 64 kilobytes of RAM.

.NET 3.0 and .NET 3.5

Version 3.0 of the framework was released on November 21, 20065 and ver-
sion 3.5 was released one year later, on November 20, 2007. .NET 3.0 comes
pre-installed with Windows Vista and Windows Server 2008; Windows 7
includes .NET 3.5 by default.

1http://msdn.microsoft.com/en-us/library/bb822049.aspx, .NET Framework Versions
and Dependencies

2http://msdn.microsoft.com/en-us/magazine/cc164162.aspx, Namespace, Security, and
Language Support in the .NET Framework 1.1

3http://www.microsoft.com/en-us/download/details.aspx?id=19, Download: .NET
Framework Version 2.0 Redistributable (x86)

4http://microsoft.com/netmf/about, .NET Micro Framework – About
5http://www.microsoft.com/en-us/download/details.aspx?id=31, Download: Microsoft

.NET Framework 3.0 Redistributable Package

http://microsoft.com/download
http://msdn.microsoft.com/en-us/library/bb822049.aspx
http://msdn.microsoft.com/en-us/magazine/cc164162.aspx
http://www.microsoft.com/en-us/download/details.aspx?id=19
http://microsoft.com/netmf/about
http://www.microsoft.com/en-us/download/details.aspx?id=31

3. CLI Implementations – .NET and Mono 14

.NET 3.0 introduced a number of new libraries which are not specified
by ISO/IEC and provide additional functionality. These library stacks are
WPF (Windows Presentation Foundation), WCF (Windows Communica-
tion Foundation), and WF (Windows Workflow Foundation). These tech-
nologies are outlined briefly in Chapter 4. The version of the CLR remained
at 2.0.

With .NET 3.5, Microsoft made the source code of its implementation
of the Standard Libraries publicly available to assist with debugging. It is
released under the Microsoft Reference Source License6, which allows devel-
opers to view the source code for reference, but nothing else.

.NET 4.0

This next release of the .NET Framework simplified access to parallel pro-
gramming paradigms. Developers can use the Task Parallel Library7 (TPL)
and PLINQ8 (Parallel Language Integrated Query) to improve performance
of their applications on multi-core systems. Additionally, new numerical
types were added, for instance System.Numerics.BigInteger, to perform arbi-
trary-precision arithmetic and System.Numerics.Complex to represent com-
plex numbers. Furthermore, .NET 4.0 introduced some new source language
features, such as named and optional parameters. .NET 4.0 platform up-
date 1 (.NET 4.0.1) added some features to WF, notably classes to design
state machine workflows.

.NET 4.0 was released on April 12, 20109. It is not pre-installed on the
Microsoft Windows operating systems. The CLR version number of this
release is 4.

.NET 4.5

.NET 4.5 is the upcoming release of the Microsoft .NET Framework. It
includes new core features and extensions of existing technologies, such as
WPF, WCF, and WF10. Developers currently have the ability to test a
release candidate of this framework version. The final version of the .NET
Framework 4.5 is planned to be released later this year.

6http://referencesource.microsoft.com/netframeworklicense.aspx, Microsoft .NET Frame-
work Reference License

7http://msdn.microsoft.com/en-us/magazine/cc163340.aspx, Parallel Performance: Op-
timize Managed Code for Multi-Core Machines

8http://msdn.microsoft.com/en-us/magazine/cc163329.aspx, Parallel LINQ: Running
Queries on Multi-Core Processors

9http://www.microsoft.com/en-us/download/details.aspx?id=17718, Download: Mi-
crosoft .NET Framework 4 (Standalone Installer)

10http://msdn.microsoft.com/en-us/library/ms171868.aspx, What’s New in the .NET
Framework 4

http://referencesource.microsoft.com/netframeworklicense.aspx
http://msdn.microsoft.com/en-us/magazine/cc163340.aspx
http://msdn.microsoft.com/en-us/magazine/cc163329.aspx
http://www.microsoft.com/en-us/download/details.aspx?id=17718
http://msdn.microsoft.com/en-us/library/ms171868.aspx

3. CLI Implementations – .NET and Mono 15

Figure 3.1: Screenshot of Microsoft Visual Studio 2010 Premium Edition

Language extensions include the async and await keywords for the C#
and Visual Basic.NET source languages11. These keywords simplify the de-
velopment of asynchronous operations by automatically suspending asyn-
chronous methods and handing back control to the calling method, while
waiting for a long running method to complete. Once the result from the
long running method is available, the suspended method is resumed auto-
matically.

3.1.2 Visual Studio

Microsoft Visual Studio is an IDE from Microsoft to aid developers writing
– not only .NET – code. The current version of Visual Studio is Microsoft
Visual Studio 2010 12. Visual Studio 2012 is set to be released with the
upcoming .NET 4.5 release. Figure 3.1 shows a screenshot of Visual Studio
2010 Premium edition.

Visual Studio is available in different editions (Express, Professional,
Premium, and Ultimate), each with a different set of features. Microsoft also
offers a stripped-down, free version of Visual Studio, Visual Studio Express,
which offers less functionality and has no add-on support. Prices range from
free (Express Edition) to $ 11899 for the Ultimate edition, as of July 2012.

11http://msdn.microsoft.com/en-us/library/hh191443.aspx, Asynchronous Programming
with Async and Await (C# and Visual Basic)

12http://microsoft.com/visualstudio

http://msdn.microsoft.com/en-us/library/hh191443.aspx
http://microsoft.com/visualstudio

3. CLI Implementations – .NET and Mono 16

Figure 3.2: Screenshot of SharpDevelop 4.2

3.1.3 SharpDevelop

SharpDevelop (#develop) is an open-source IDE for developing .NET appli-
cations, maintained by IC#Code. It provides a feature set comparable to that
of Visual Studio Express edition. Some of the features include GUI design-
ers for Windows Forms projects, syntax-highlighting support for different
source languages, and code completion [16].

SharpDevelop heavily relies on P/Invoke and will therefore not run on
operating systems besides Microsoft Windows. It also uses a WPF based text
editor component (AvalonEdit), as of version 4. A screenshot of SharpDe-
velop 4 is shown in Figure 3.2.

The current version of SharpDevelop is SharpDevelop 4, released on May
6, 2012. Supported operating systems are Windows XP SP2 and later13.

3.2 Mono

Mono is an open-source implementation of the Common Language Infra-
structure which is specified in ISO/IEC 23271 and ECMA-335. It contains
a compiler for the different CLI languages, a runtime environment and com-
mon class libraries. The project was started in 2002 by Miguel de Icaza
who was working at Novell Inc. at that time. Mono is currently main-
tained by Xamarin. Several books present and discuss development with
Mono [14, 33, 9, 21, 26].

13http://www.icsharpcode.net/OpenSource/SD/Download, Downloads @ic#code

http://www.icsharpcode.net/OpenSource/SD/Download

3. CLI Implementations – .NET and Mono 17

Critical voices discourage the use of Mono especially for free, open-source
software projects. Microsoft holds patents which might be infringed by im-
plementations of the CLI and C# standards. The Free Software Foundation,
founded by Richard M. Stallman, is probably the most prominent voice in
this direction14. Microsoft has put both CLI and C# specifications under
the Microsoft Community Promise15. This promise is irrevocable and states
that Microsoft will not assert claims against implementers and users of these
specifications.

Developers of Mono generally implement new language and runtime fea-
tures very fast. For example, the new keywords async and await of .NET 4.5
and C# 5.0 are already available16 under Mono. Also, Mono supports syntax
extensions of source languages, such as LINQ.

The current stable version of Mono is Mono 2.10.8 and was released on
December 19, 2011. An alpha version (Mono 2.11.2) is also available for
download on the Mono website.

3.2.1 Compiler

Several compilers for different source languages exist for Mono, including
compilers for C#, VB.NET, and F#. The C# compiler supports several ver-
sions of the language, starting from C# 1.0 to C# 5.0. The compiler of Mono
produces conforming CIL code, as specified in ISO/IEC 23271. Therefore as-
semblies compiled with Mono will run in Microsoft’s .NET Framework and
any other compliant implementation of the Common Language Infrastruc-
ture.

Developers can leverage the compiler’s functionality by referencing the
Mono.Sharp.dll assembly in their projects and using the Mono.CSharp.

Evaluator class. This allows the usage of the compiler from client code and
applications (compiler-as-a-service).

Java support is provided through IKVM.NET 17, which is shipped as
part of Mono. IKVM.NET contains a static compiler to translate Java files
(.java, .class or .jar) into Intermediate Language.

3.2.2 Runtime

Mono provides a runtime which runs on several operating systems, including
the popular Windows, Linux and Mac OS operating systems. Behavior of
the runtime is specified in ISO/IEC 23271 [20].

14http://www.fsf.org/news/dont-depend-on-mono, Why free software shouldn’t depend
on Mono or C#

15http://www.microsoft.com/openspecifications/en/us/programs/community-promise/
default.aspx, Community Promise, Microsoft Open Specifications

16http://tirania.org/blog/archive/2012/Mar-22.html, Mono 2.11.0 is out
17http://www.ikvm.net/

http://www.fsf.org/news/dont-depend-on-mono
http://www.microsoft.com/openspecifications/en/us/programs/community-promise/default.aspx
http://www.microsoft.com/openspecifications/en/us/programs/community-promise/default.aspx
http://tirania.org/blog/archive/2012/Mar-22.html
http://www.ikvm.net/

3. CLI Implementations – .NET and Mono 18

The runtime needs to be able to execute and compile CIL to native
instructions on the target system. The Mono runtime can do this with a
Just-in-Time and an Ahead-of-Time compiler. They transform Common In-
termediate Language into native operations on the target platform.

Java runtime support is again provided through IKVM.NET which pro-
vides an implementation of the JVM on top of the CLI and allows Java
programs to be executed inside the Virtual Execution System of the CLI.
Java byte code can be directly executed under the runtime of a CLI compli-
ant implementation, through the JIT compiler of IKVM.

Garbage Collectors

This section gives a brief overview of the two garbage collectors that are
implemented in Mono. Information was compiled from the official Mono
website18 and the source code.

Mono currently provides two distinct garbage collectors. The first one
is named Conservative Boehm GC, the second, newer GC goes under the
name SGen – Precise Generational GC, short SGen (Simple Generational).
In the current release, Mono uses the Boehm GC by default, but it can be
configured to use SGen instead.

The Boehm GC of Mono is an implementation of the Boehm-Demers-
Weiser garbage collector19 [4]. This GC was originally written for C and C++

applications and replaces malloc and new, making it unnecessary to explicitly
call free or delete. Since it was written for unmanaged languages, Boehm
has its limitations when used in a managed environment such as the CLI.
This was the main motivation which lead to the development of the SGen
garbage collector.

SGen uses two generations to optimize GC performance. Objects are cre-
ated in a so-called nursery section, and are moved to the second generation
after they survived the first garbage collection. A Large Object Space is pro-
vided for objects larger than 8000 bytes to prevent memory fragmentation.

SGen can currently be used optionally and is likely to become the default
garbage collector with one of the next Mono releases. It is enabled by ap-
pending the --gc=sgen option when invoking Mono, or by adding this value
to the environment variable MONO_ENV_OPTIONS.

Both garbage collectors of Mono are stop-the-world garbage collectors.
This means that all active threads are suspended during garbage collection
and are resumed after the collection has completed.

18http://mono-project.com/Generational GC, http://mono-project.com/Working With
SGen

19http://www.hpl.hp.com/personal/Hans Boehm/gc/, A garbage collector for C and C++

http://mono-project.com/Generational_GC
http://mono-project.com/Working_With_SGen
http://mono-project.com/Working_With_SGen
http://www.hpl.hp.com/personal/Hans_Boehm/gc/

3. CLI Implementations – .NET and Mono 19

3.2.3 Libraries

To provide a conforming implementation of the CLI, Mono is required to
provide the libraries described in Partition IV of the standard and its corre-
sponding XML file, the Standard Libraries [20]. These libraries are located in
the System namespace. Appendix B of “Cross-Platform .NET Development”
contains diagrams listing all namespaces defined by the Common Language
Infrastructure, as well as namespaces grouped by their dependence on the
underlying architecture [10].

Mono also provides a number of libraries which are not specified by the
Common Language Infrastructure. Not all of them are fully implemented
though. One such library which is not contained in ISO/IEC 23271 is Win-
dows Forms for writing GUI applications with native Windows look and feel.
Section 4.5 on page 28 describes the current status of the Mono implemen-
tation of System.Windows.Forms.

Microsoft has released the source code of several of its formerly propri-
etary libraries under open-source licenses. Just recently, the Entity Frame-
work was open-sourced under the Apache License 2.020. A few months ear-
lier, ASP.NET MVC 4, ASP.NET Web API, and ASP.NET Web Pages v2
(Razor) were open-sourced21. The Mono project incorporates these libraries
as soon as their source code is available under a GPL compatible license.

Several libraries are still missing from Mono or lack features due to license
incompatibilities, unavailable developer resources, or strong dependencies on
the underlying operating system. Examples are the WPF, WCF, and WF
libraries, which were introduced as part of .NET 3.0. The current status of
these and other libraries in Mono is presented in the next chapter.

3.2.4 MonoDevelop

MonoDevelop is an integrated development environment (IDE) and is the
equivalent of Microsoft’s Visual Studio IDE. It supports a wide range of
programming languages (including C#) and can read and write solution
(.sln) and project (.csproj) files used by Visual Studio. All versions of
the format (Visual Studio 2005, 2008 and 2010) are currently supported.
MonoDevelop was started in 2003 in an effort to port SharpDevelop to Mono
and GTK#.

Many of the features that developers are accustomed to from other IDEs,
such as Visual Studio or Eclipse, are available in MonoDevelop as well.
These features include, but are not limited to, auto-completion, breadcrumb
navigation, class browser, version control integration and a debugger. An

20http://blogs.msdn.com/b/adonet/archive/2012/07/19/entity-framework-and-open-
source.aspx, Entity Framework and Open Source

21http://weblogs.asp.net/scottgu/archive/2012/03/27/asp-net-mvc-web-api-razor-and-
open-source.aspx, ASP.NET MVC, Web API, Razor and Open Source

http://blogs.msdn.com/b/adonet/archive/2012/07/19/entity-framework-and-open-source.aspx
http://blogs.msdn.com/b/adonet/archive/2012/07/19/entity-framework-and-open-source.aspx
http://weblogs.asp.net/scottgu/archive/2012/03/27/asp-net-mvc-web-api-razor-and-open-source.aspx
http://weblogs.asp.net/scottgu/archive/2012/03/27/asp-net-mvc-web-api-razor-and-open-source.aspx

3. CLI Implementations – .NET and Mono 20

Figure 3.3: The MonoDevelop Integrated Development Environment

add-in manager enables developers to extend the functionality of their IDE
with third party add-ins.

Similar to the core Mono infrastructure, MonoDevelop runs on the ma-
jor operating systems (Linux, Mac OS, Windows). It relies on the multi-
platform GTK+22 project for drawing its GUI and widgets. A screenshot of
MonoDevelop running in Ubuntu can be seen in Figure 3.3

The latest release is MonoDevelop 3.0 and was announced on May 14,
201223. A list of important changes for this release can be found on the
MonoDevelop website24.

3.3 Other Implementations

.NET and Mono are not the only implementations of the ISO/IEC 23271
standard. Other implementations exist, but are not as popular. A handful
of other implementations is listed in the book “Cross-platform development
with .NET” [10]. A short summary of each implementation is given in the
next few paragraphs.

22http://gtk.org, The GTK+ Project
23http://monodevelop.com/Download/Release Notes/Release Notes for MonoDevelop 3.0
24http://monodevelop.com/Download/What%27s new in MonoDevelop 3.0

http://gtk.org
http://monodevelop.com/Download/Release_Notes/Release_Notes_for_MonoDevelop_3.0
http://monodevelop.com/Download/What%27s_new_in_MonoDevelop_3.0

3. CLI Implementations – .NET and Mono 21

3.3.1 Microsoft .NET Compact Framework

The Microsoft .NET Compact Framework was introduced together with
.NET 1.1 and is a stripped down version of the Microsoft .NET Framework
with a smaller memory footprint. It is specifically targeting devices with
limited resources, such as PDAs and mobile phones. These devices often run
the Microsoft Pocket PC or Windows CE operating systems.

3.3.2 DotGNU Portable.NET

Portable.NET (PNET) is part of the DotGNU project and provides its CLI
implementation. DotGNU aims at providing a fully compatible environment
for running web services. PNET runs on several operating systems, including
Linux, Windows, Solaris, FreeBSD, and Mac OS. It is licensed under the
popular GPL.

Source languages are translated to bytecode by the Southern Storm Soft-
ware’s Tree Compiler, treecc. treecc is not only able to generate IL, but
also Java bytecode.

When compiling CIL to native code during execution, Portable.NET
takes a different approach than the other runtimes. Instead of directly com-
piling CIL to native code, another step is inserted. CIL is first compiled
to Converted Virtual Machine (CVM), and only then CVM is compiled to
native code via an interpreter. This is one of the aspects that makes the
PNET runtime highly portable across different platforms.

Looking at the website25 of the PNET project, it seems that development
is discontinued – the last project update found on their website dates back
to June 2009. Only a handful commits were made between 2009 and 2012
in the source code repository.

3.3.3 Open CLI Library

The Open CLI Library was created for the Open Runtime Platform by Intel.
The Open Runtime Platform can host several distinct JIT compilers and
was designed for research on managed runtime environments. Both Open
CLI Library and Open Runtime Platform are licensed under an open-source
license.

3.3.4 Shared Source CLI

The Shared Source CLI (“Rotor”) is developed by Microsoft and Corel and
was first released in 2002. It serves as a demonstration of .NET’s cross-
platform compatibility and provides a sample implementation of the CLI
standard. The SSCLI provides a runtime (similar to Microsoft’s CLR), a C#
compiler, some extra class libraries, development tools, and research tools.

25http://www.gnu.org/projects/dotgnu/, DotGNU Project

http://www.gnu.org/projects/dotgnu/

3. CLI Implementations – .NET and Mono 22

It is licensed under a shared source license, which means it cannot be
used for commercial products, but the source code is publicly available. A big
portion of its code is shared with the commercial and proprietary Microsoft
.NET Framework. As such, it provides good insights into how the .NET
Framework works internally.

Chapter 4

Shortcomings and
Incompatibilities

While Mono fully implements the Common Language Infrastructure spec-
ified in ISO/IEC 23271 and tries to be compatible with Microsoft’s imple-
mentation of the standard, it cannot fully replace Microsoft .NET (yet). Ad-
ditionally, Mono is a cross-platform project and aims to run on all common
operating systems (Windows, Linux, Mac OS), and thus can only provide
features available on all systems. Some features are restricted to certain en-
vironments, such as access to the Windows registry and P/Invoke to call
native libraries.

This chapter highlights the most common issues developers might en-
counter when porting applications from .NET to Mono, and in turn from
Microsoft Windows to Linux. The author describes simple solutions and
gives general directions on how to resolve these problems, some of which
are applied in the case-study in Chapter 5. Other concrete problems and
their resolutions are also dealt with in the case study, in which the author
describes the process of porting the HeuristicLab 3.3.6 framework to Mono
and Ubuntu Linux.

This and the following chapter not only focus on implementations of the
Common Language Infrastructure standard, but also discuss the ecosystems
involved. The ecosystem includes third-party libraries, non-standard exten-
sions, development tools and differences between operating systems, among
others. These are all factors which influence the complexity of the task of
porting an application from .NET to Mono.

For many of the problems it should be possible to avoid them in the first
place, if an application is developed with cross-platform portability in mind,
but this may not always be possible. Also, many .NET applications were
written before the Mono project existed or before it was a viable alternative
to .NET.

23

4. Shortcomings and Incompatibilities 24

Most of the information from this chapter were aggregated from a num-
ber of websites, mostly the website and wiki of the Mono project1, the
personal blog of Mono founder Miguel de Icaza2 [7], and the Microsoft De-
veloper Network (MSDN)3. In addition, the source-code of the Mono project
was used as a reference and to verify implementation details4.

4.1 Mono Migration Analyzer (MoMA)

The Mono project provides a tool called the Mono Migration Analyzer, short
MoMA5. MoMA analyzes .NET applications (.exe) and libraries (.dll) and
generates a report about potential issues. This report helps to get an initial
overview of which components might need fixing to be used with Mono.

MoMA is able to detect four potential problem sources and categorizes
them as Missing Methods, MonoTODO, NotImplementedException, and
P/Invoke6.

� Missing Method: These methods are not implemented in Mono at
all. Source code using these methods does not compile, and calling
such methods results in an exception of type MissingMethodException

being thrown.

� MonoTODO: Methods in Mono’s source code might have a MonoTODO

attribute attached. The attribute can also contain an optional descrip-
tion (Reason). MonoTODO attributes are usually a sign of small bits of
missing functionality, but may also be attached to method stubs which
do not perform any meaningful action. Code that references methods
marked with MonoTODO will compile just fine. Running the compiled
code should generally work without crashing, but may not produce
the expected results.

Some examples are:

1 [MonoTODO("Stub, does nothing")]

2 [MonoTODO("Only implemented for Win32, others always return

false")]

3 [MonoTODO("Implented for Win32, X11 always returns 0,0")]

4 [MonoTODO("columnIndex parameter is not used")]

� NotImplementedException: Some methods are not actually imple-
mented and their body only contains a single statement, which throws
an exception of type NotImplementedException. Code that references
these methods compiles, but calling them throws an exception. Some-

1http://mono-project.com
2http://tirania.org/blog
3http://msdn.com
4https://github.com/mono/, Mono Project
5http://www.mono-project.com/MoMA
6http://www.mono-project.com/MoMA - Issue Descriptions

http://mono-project.com
http://tirania.org/blog
http://msdn.com
https://github.com/mono/
http://www.mono-project.com/MoMA
http://www.mono-project.com/MoMA_-_Issue_Descriptions

4. Shortcomings and Incompatibilities 25

times only certain code paths of methods are affected and calling meth-
ods under certain conditions might work as expected.

� P/Invoke: Platform Invoke is a mechanism to call unmanaged code of
native libraries (e.g. user32.dll or libc) from managed code. Often-
times, P/Invoke calls cause problems, because native libraries usually
only exist for a particular platform. Mono supports P/Invoke calls,
provided the native library exists on the host system. An in-depth dis-
cussion of this topic and related problems can be found in Section 4.8

4.2 Windows Communication Foundation

Windows Communication Foundation (WCF) is a framework that provides
high level communication between processes on the same system or across
system boundaries. It was introduced as part of Microsoft .NET 3.0. WCF
can communicate over a variety of channels, such as named pipes, TCP, and
HTTP. Bindings provide additional functionality on top of the standard
protocols in the form of transaction and session support, among others.

Bindings without support for transactions include BasicHttpBinding,
NetMsmqBinding, NetPeerTcpBinding, and WebHttpBinding. The default bind-
ings BasicHttpBinding, NetNamedPipeBinding, and NetPeerTcpBinding do not
support reliable sessions. Reliable sessions guarantee that messages are re-
ceived in correct order and that each message is received exactly once [36].

A WCF endpoint is configured by setting three main properties: address,
binding and contract. A sample configuration of a service endpoint is shown
in Listing 4.1.

Listing 4.1: WCF Endpoint Configuration7

1 <configuration>

2 <system.serviceModel>

3 <services>

4 <service name="Microsoft.ServiceModel.Samples.CalculatorService">

5 <endpoint address="net.tcp://localhost:9000/sample/service"

6 binding="netTcpBinding"

7 contract="Microsoft.ServiceModel.Samples.ICalculator" />

8 </service>

9 </services>

10 </system.serviceModel>

11 </configuration>

Most of the classes which provide WCF’s functionality can be found in
the System.ServiceModel namespace. The assembly System.ServiceModel.

Web provides a number of classes which help in building REST Web Ser-
vice [36]. Mono supports the basic functionality of the System.ServiceModel

assembly and simple bindings of the WCF framework.

7http://msdn.microsoft.com/en-us/library/ms734786.aspx, How to: Create a Service
Endpoint in Configuration

http://msdn.microsoft.com/en-us/library/ms734786.aspx

4. Shortcomings and Incompatibilities 26

One of the main problems with Mono’s WCF implementation is the lack
of the WS-* bindings8. These bindings are necessary to add security aspects
(e.g. authentication, authorization) and transaction support to the basic
HTTP bindings. Trying to create an endpoint with one of these bindings
under Mono throws an InvalidOperationException. There are currently no
plans to add support for these bindings to Mono.

A modern alternative to WCF that is supported by both .NET and Mono
is ServiceStack9. ServiceStack does not require XML files for configuration
and does not rely on generated code, but requires strongly typed DTOs
(Data Transfer Objects) for type inference. Speed and simplicity are also
one of the main goals of the ServiceStack project.

4.3 Windows Presentation Foundation

Windows Presentation Foundation (WPF) was first introduced in .NET 3.0
and is the successor of Windows Forms (discussed in Section 4.5) [28]. It is a
new presentation framework and combines features of existing frameworks,
such as GDI, HTML and Adobe Flash [34].

One of its main advantages is the separation of actual code and lay-
out descriptions. WPF allows developers to describe the layout of widgets
declaratively through means of XAML [28]. XAML is discussed in Subsec-
tion 4.3.1.

WPF is currently only implemented in Microsoft .NET and is not sup-
ported by Mono. According to the Mono project’s website, there are cur-
rently no plans to work on an implementation within Mono: “The project
[WPF] is too large and there has not been any serious interest from the
community to make this effort move forward”10. The cost of implementing
the complete WPF stack within Mono was estimated in March 2011 to be
2 – 3 years worth of work for 15 – 20 developers11. A subset of the WPF API
is already implemented in Moonlight, the open-source implementation of Sil-
verlight. However, the development of Moonlight was discontinued in May
201212.

Developers who want to run and compile their applications with Mono
should keep that in mind and avoid WPF in favor of Windows Forms or one
of the alternatives listed in Section 4.5.

8http://www.mono-project.com/WCF WSHttpBindingHacking
9http://servicestack.net/, Open source .NET and Mono web services framework

10http://www.mono-project.com/WPF, http://www.mono-project.com/WPF Notes
11http://tirania.org/blog/archive/2011/Mar-07.html, GDC 2011
12http://www.infoq.com/news/2012/05/Miguel-Moonlight, Miguel de Icaza on ASP.NET

MVC, Moonlight, and the Android Lawsuit

http://www.mono-project.com/WCF_WSHttpBindingHacking
http://servicestack.net/
http://www.mono-project.com/WPF
http://www.mono-project.com/WPF_Notes
http://tirania.org/blog/archive/2011/Mar-07.html
http://www.infoq.com/news/2012/05/Miguel-Moonlight

4. Shortcomings and Incompatibilities 27

4.3.1 XAML

XAML (Extensible Application Markup Language) was introduced as part of
the Windows Presentation Foundation stack to enable developers to define
user interfaces declaratively in XML. Elements directly represent classes
and attributes are used to access properties of these classes. Every XAML
document could be converted into fully procedural code. In contrast to e.g.
HTML, XAML is strongly typed. Trying to declare elements of the wrong
type results in compilation and runtime errors [25].

XAML is very concise for describing UIs and general object hierarchies.
See Listing 4.2 for a simple XAML snippet which declares a page containing
a labeled button. These hierarchies can be arbitrarily complex.

Listing 4.2: Simple XAML Document13

1 <Page

2 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

3 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

4 x:Class="ExampleNamespace.ExamplePage">

5 <Button Click="Button_Click" >Click Me!</Button>

6 </Page>

While WPF is not supported by Mono (see Section 4.3 above), XAML
is mostly implemented within Mono. XamlObjectReader, XamlObjectWriter,
XamlXmlReader, and XamlXmlWriter are implemented to read and write ob-
jects and XML files, respectively14. An up-to-date overview of the current
status of Mono’s XAML implementation can be found on the Mono Class
Status Pages15.

4.4 Windows Workflow Foundation

Windows Workflow Foundation (WF) allows developers to design and build
workflow enabled applications16. It was first introduced in .NET 3.0 together
with WPF and WCF. The .NET 4.0 platform update 1 added support to
properly implement state machines with WF.

Windows Workflow Foundation is currently not supported by Mono17.
Six out of nine major features are currently unimplemented, and three fea-
tures are only implemented partially. Other open-source alternatives for

13http://msdn.microsoft.com/en-us/library/ms752059.aspx, XAML Overview (WPF)
14http://www.mono-project.com/SystemXamlHacking
15http://go-mono.com/status/status.aspx?reference=4.0&profile=4.0&assembly=System.

Xaml
16http://msdn.microsoft.com/en-us/netframework/aa663328.aspx, Windows Workflow

Foundation
17http://www.mono-project.com/Workflow

http://msdn.microsoft.com/en-us/library/ms752059.aspx
http://www.mono-project.com/SystemXamlHacking
http://go-mono.com/status/status.aspx?reference=4.0&profile=4.0&assembly=System.Xaml
http://go-mono.com/status/status.aspx?reference=4.0&profile=4.0&assembly=System.Xaml
http://msdn.microsoft.com/en-us/netframework/aa663328.aspx
http://www.mono-project.com/Workflow

4. Shortcomings and Incompatibilities 28

modelling state-machines or state-machine based workflows include state-
less18 and Jazz19.

4.5 Windows Forms

When the Mono project was started, applications developed for .NET pri-
marily relied on the Windows Forms library for creating and interacting with
GUI elements. Mono provides its own implementation of Windows Forms
and the classes of the System.Windows.Forms namespace. The Mono imple-
mentation emulates the look and feel of Windows application, but draws all
widgets with methods from the System.Drawing assembly. This ensures the
same functionality and appearance on all operating systems.

Much effort was put into making Mono’s Windows Forms implementa-
tion compatible with Microsoft’s implementation in .NET as much as pos-
sible. The Mono implementation of Windows Forms works well enough for
simple GUIs and can be used without problems most of the time. However,
there are still rough edges in the implementation provided by Mono.

Parts of Mono’s Windows Forms implementation, that would benefit
from some additional work, are the types related to DataGrids and Data-
GridViews. Some methods are only dummy implementations that return a
constant value. For instance, GetPreferredWidth() from the class System.

Windows.Forms.DataGridViewColumn always returns 0, a value that is not a
valid width. Assigning it to the width property throws an exception of type
System.ArgumentOutOfRangeException during runtime. A patch for this bug
was already sent to the Mono developers and should be included in the next
Mono releases.

Alternatives to Windows Forms include the multi-platform GTK+ (for
instance used by MonoDevelop), Qt, or other GUI toolkits with bindings
for .NET and Mono. GTK+ is accessible from CLI implementations through
the GTK# library which provides bindings for CLI implementations.

“Cross-Platform .NET Development” [10] contains helpful pointers for
using the MVC (Model-View-Controller) pattern to write GUI-toolkit ag-
nostic source code. An overview of popular GUI toolkits and their level of
support for different platforms is provided as well.

4.5.1 Charting

The Windows Forms namespace contains a sub-namespace, System.Windows
.Forms.DataVisualization, which can be used to draw and manipulate in-
teractive charts and diagrams. This library is also known as Microsoft Chart
Controls. It is currently not implemented in Mono, with many classes and

18http://code.google.com/p/stateless/, stateless – A C# Hierarchical State Machine
19http://jazz.codeplex.com/

http://code.google.com/p/stateless/
http://jazz.codeplex.com/

4. Shortcomings and Incompatibilities 29

Figure 4.1: ZedGraph (left) vs. Microsoft Chart Controls (right)

methods missing from the assembly or throwing exceptions of type System.

NotImplementedException.
Depending on the requirements of the project, the open-source project

ZedGraph20 might be used as an alternative to Microsoft Chart Controls.
ZedGraph allows developers to draw different types of charts with zoom and
pan functionality. Figure 4.1 shows a simple plot generated with ZedGraph
side by side with the same data points plotted with Microsoft’s System.

Windows.Forms.DataVisualization.Charting library. ZedGraph development
seems to have stalled, since the last revision in ZedGraph’s Subversion repos-
itory was committed more than three years ago (December 12, 2008).

4.6 Windows Registry

This section discusses how to store and retrieve information in and from the
Windows registry with applications written for .NET and Mono. Developers
and users are very likely to encounter problems when applications are run
on different operating systems. These problems are not directly related to
the chosen runtime, but depend on the underlying operating system.

The Windows registry exists, for obvious reasons, only on Windows op-
erating systems. Applications relying on Windows registry will hence not
work without alterations on other operating systems. Mono is capable of
accessing the Windows registry on Windows operating systems. On other
operating systems, Mono emulates the Windows registry: Keys and subkeys
are represented by directories and values are stored in XML files. It is pos-
sible to store values in the registry and to retrieve them at a later date.

20http://sourceforge.net/projects/zedgraph/

http://sourceforge.net/projects/zedgraph/

4. Shortcomings and Incompatibilities 30

It is however not possible to query the registry for information about the
operating system [10].

When trying to open non-existent registry keys on other operating sys-
tems besides Microsoft Windows, an exception of type System.Security.

SecurityException is thrown. This is due to the fact that Mono tries to
create directories for missing keys on the fly, but fails since the location is
usually not writable by normal users.

An approach that does not rely on the Windows registry for storing ap-
plication configuration data is the use of assembly configuration files (usually
app.config). They enable developers to store information in XML format
on a per-assembly, per-machine, and per-organization basis [10]. Assembly
configuration files are simply stored in the file system together with the
actual assembly file. Settings stored in these files can be accessed through
classes of the System.Configuration namespace.

Other approaches include storing information in flat text files or stand-
alone databases, such as SQLite.

4.7 Security

CLI Implementations can use the CLI Metadata to provide Code Access
Security (CAS) [20]. CAS allows to grant or deny a set of permissions for
code, which are checked during execution. Code access security is an imple-
mentation detail and is not required to be present in implementations of the
CLI.

.NET’s code access security model has undergone quite some change
with version 4 of the framework21. Applications can either be fully trusted
or partially-trusted. Local (desktop) applications are always executed with
full trust; sandboxed (hosted) applications are partially-trusted and can only
run with restrictions. Code in .NET falls into three categories: transparent,
critical, and safe-critical code. Transparent code is the most restricted code
and cannot contain unverifiable code, call native functions with P/Invoke,
or call code categorized as critical, among others. Critical code is the least
restricted and can practically do anything. Safe-critical code plays a media-
tor role, as it can be called from transparent code yet still call critical code
itself.

CAS was marked as experimental in Mono 1.2 (released in 2006), with
no release date planned22. Not much work has been put into code access
security since, and the current state is still comparable to what it was then.
A subset of code access security however was implemented with Moonlight
to support Silverlight’s security model.

21http://msdn.microsoft.com/en-us/library/ff527276.aspx, Summary of Changes in Code
Access Security

22http://www.mono-project.com/CAS

http://msdn.microsoft.com/en-us/library/ff527276.aspx
http://www.mono-project.com/CAS

4. Shortcomings and Incompatibilities 31

4.8 Platform Invoke

Platform Invoke (often shortened to P/Invoke) is a mechanism in the Com-
mon Language Infrastructure to allow applications to use native libraries.
One of the main reasons this feature exists is the amount of COM (Compo-
nent Object Model) legacy code [31].

Different operating systems use different formats for native libraries.
Windows uses .dll (Dynamic Link Library) files, Mac OS uses .dylib (Dy-
namic Library) files and Linux uses .so (Shared Object) files. Each of these
file formats can only be executed on the operating system and architecture
they were compiled for.

Managed types are marshaled during execution to and from their un-
managed counter parts, when calling a native function made accessible with
P/Invoke. If a defined entry point is not found, an exception of type System.

EntryPointNotFoundException is thrown during execution. This means that
applications that rely on Platform Invoke compile without problems with
Mono’s compiler, but are very likely to crash during execution. They will
definitely crash when trying to execute a P/Invoke instruction for a library
that is not available on the current system.

Common assemblies that rely on unmanaged code are listed for each
CLI implementation in chapter 7 and in Appendix B of “Cross-Platform
.NET Development”, together with fully managed assemblies [10]. The web-
site http://pinvoke.net collects information on P/Invoke signatures for many
unmanaged libraries, including alternative managed APIs where available.

When there are multiple versions of the same library for multiple operat-
ing systems, it is possible to use the same P/Invoke calls across all operating
systems. In that case the Mono project recommends to declare DllImports

without a file extension to allow the runtime to pick the correct library, de-
pending on the operating system23. This increases maintenance costs, since
developers have to maintain multiple variants of the same library. Also, bugs
could exist on one operating system, but not on the other.

On the other hand, developers of an application can choose to write
wrappers around P/Invoke calls which determine the current runtime and
choose the adequate implementation. Easton and King show how to apply
object-oriented design patterns to choose the correct version of the library
during execution [10]. The maintenance cost of these first two options are
comparable, since developers have to maintain multiple version of the same
native library.

Another solution is to avoid native libraries altogether and develop appli-
cations exclusively with managed code. This is often not possible to imple-
ment or not feasible: Developers would have to replace all native functions
with managed code counterparts. This is easier, if the native library was

23http://www.mono-project.com/Interop with Native Libraries

http://pinvoke.net
http://www.mono-project.com/Interop_with_Native_Libraries

4. Shortcomings and Incompatibilities 32

written by the same team or developers who are working on the managed
part of the code base. For external (third party) libraries, this rarely is an
option.

4.9 Case Sensitive File Systems

Incompatibilities due to case sensitive paths are not directly a problem of
Mono, but a consequence of its multi-platform nature. Mono runs on differ-
ent platforms and operating systems and these systems all support different
types of file systems.

On Windows with .NET the most prominent file system currently is
NTFS. NTFS must support case-sensitive filenames to be POSIX compli-
ant24. Although NTFS supports path names that only differ in capital-
ization, Windows does not allow to create such files, but it preserves the
capitalization of filenames when creating files and directories. Third party
applications might allow creation of and access to files with the same name
but different capitalization, a good example is the open-source driver ntfs-
3g25 for NTFS. Windows normally accesses files case-insensitively on NTFS
volumes and is only able to access one of multiple paths that differ only in
capitalization. MAC OS’s file system, HFS+, is case-insensitive by default.
Restrictions similar to those of NTFS apply.

In contrast to the above, Linux based file systems such as ext4 are case-
sensitive. Paths are considered unique if they differ in name or capitalization.
When accessing files, the exact name must be given. Trying to access a path
whose capitalization does not match exactly that of the path on disk results
in an error.

Applications designed only with case-insensitive file systems in mind
might consequently reference files that do not exist when working with case-
sensitive file systems. This often happens by accident: path names are either
written manually and no attention is given to capitalization, or a file is
renamed which results in the same name but different capitalization.

Mono offers several options to make migration to other file systems rela-
tively painless. Behavior can be controlled with the MONO_IOMAP environment
variable. A special profiler (--profile=iomap) of Mono traces all re-mappings
of file paths and gives a detailed report after execution. This information
aids developers immensely to detect incorrect paths spread throughout the
source code of a project. Even though Mono has the option of folding the
case of path names, the better option for developers is to use the proper case
when referencing files. This guarantees that an application works across all

24http://support.microsoft.com/kb/100625, Filenames are Case Sensitive on NTFS Vol-
umes

25http://www.tuxera.com/community/ntfs-3g-manual/, NTFS-3G Manual

http://support.microsoft.com/kb/100625
http://www.tuxera.com/community/ntfs-3g-manual/

4. Shortcomings and Incompatibilities 33

file systems, regardless of the compatibility options specified when executing
the application.

Another aspect that distinguishes Windows from other operating sys-
tems with regard to file system usage is the directory delimiter. While other
operating systems (including Linux and Mac OS) use a forward slash / to
delimit directories, Windows uses the backslash \. Fortunately, Mono cor-
rectly translates directory delimiters depending on the platform. Windows
properly handles forward slashes in paths too. Hence, directory delimiters
need not be fixed for CLI applications to be compatible with Windows and
other operating systems.

4.10 Compiling Files and Building Projects

Projects written for the .NET Framework are managed with Visual Studio
most of the time. Visual Studio makes use of solution and project files to
store project specific configuration options and track dependencies between
files. MonoDevelop offers read and write support for Visual Studio solution
and project files. Problems arise when project files make use of custom build
events.

Microsoft Visual Studio allows developers to define actions which are au-
tomatically executed at certain points during the build process. For instance,
actions might be triggered before starting the build or after the build pro-
cess has completed. These build events are usually used to create source files
from templates files (skeleton, frame) or to perform additional operations on
the build products after the compilation.

Build scripts were historically only written for the Windows operating
system, because Microsoft .NET does not run on other operating systems.
As such, most of the time they were either Windows executable files (.exe)
or batch scripts (.bat). For some executable files it might be possible to
execute them with WINE26, however, this is not possible for batch files.

A simple solution would be to provide different versions of the solution
and project files, referencing the proper build scripts for each target sys-
tem, e.g. batch files on Windows and shell scripts on Unix-like systems.
This requires multiple versions of project files and build scripts to be main-
tained concurrently. The required effort and maintenance increases directly
proportionally with each new system added.

A better solution to this problem is to re-write all build scripts once in
a language which is available across multiple operating systems. Scripting
languages are a good choice in this regard, since interpreters often exist for
all common operating systems. Valid choices of scripting languages include
python, ruby, perl, and others. The same build script can then be used across
all build platforms.

26http://www.winehq.org/

http://www.winehq.org/

4. Shortcomings and Incompatibilities 34

Another possibility which is independent from Visual Studio project files
is the management of the build process with a build tool such as NAnt.
NAnt is the .NET version of the Java build tool Ant which uses XML files
to define dependencies between files and tasks to execute. It runs on all
major operating systems and has support for .NET and Mono. An in-depth
explanation on how to properly use NAnt for cross-platform projects can be
found in “Cross-Platform .NET Development” [10]. An example of a simple
NAnt build script can be seen in Listing 4.3.

Listing 4.3: Simple NAnt Build Script

1 <?xml version="1.0"?>

2 <project name="simple" default="build">

3 <target name="build">

4 <csc target="exe" output="simple.exe"

5 <sources>

6 <include name="simple.cs" />

7 </sources>

8 </csc>

9 </target>

10 </project>

4.11 Unit Tests

Several unit testing frameworks exist for the .NET Framework and other CLI
implementations. Popular options include the MSTest framework, NUnit,
xUnit.net, and MbUnit. While MSTest is only supported by the .NET
Framework, the other unit testing frameworks work well with different CLI
implementations such as Mono.

This thesis focuses on NUnit as the primary unit testing framework
for .NET and Mono projects. It was originally ported from JUnit and is
available for all common languages of the CLI (C#, Visual Basic.NET, . . .),
which makes it a good cross-platform alternative to MSTest.

MonoDevelop offers NUnit integration by default, and an extension for
Visual Studio exists as well27. Direct integration into the IDE enables de-
velopers to quickly navigate through test cases and to locate failing code.
Figure 4.2 shows MonoDevelop’s unit test runner for NUnit projects.

Unit test classes and methods are marked with attributes, signalling
which methods to execute during the test phase. It is also possible to specify
methods that are executed as common startup or shutdown routines.

Simple MSTest unit tests can often be transformed into NUnit tests
with little effort by applying text transformations to the source files. On
Linux systems, GNU sed comes in handy. Listing 4.4 shows a simple sed

27http://visualstudiogallery.msdn.microsoft.com/c8164c71-0836-4471-80ce-
633383031099, Visual Nunit 2010 extension

http://visualstudiogallery.msdn.microsoft.com/c8164c71-0836-4471-80ce-633383031099
http://visualstudiogallery.msdn.microsoft.com/c8164c71-0836-4471-80ce-633383031099

4. Shortcomings and Incompatibilities 35

Figure 4.2: NUnit Test Pane inside MonoDevelop

invocation to replace common MSTest attributes and using statements with
the corresponding types and namespaces of the NUnit framework.

Listing 4.4: Replacing MSTest Attributes with their NUnit Counterpart

1 sed \

2 -e 's/^using Microsoft.VisualStudio.TestTools.UnitTesting;/using NUnit.

Framework;/; # use nunit' \

3 -e 's/\[TestClass\(()\)\?\]/[TestFixture]/; # mark test classes' \

4 -e 's/\[TestMethod\(()\)\?\]/[Test]/; # mark test methods' \

5 -e 's/\[ClassInitialize\(()\)\?\]/[TestFixtureSetUp]/; # mark setup

methods'

This will not work for all test attributes and some attributes have to be
inspected manually and replaced by a suitable attribute available in NUnit.
Several books cover unit testing with NUnit [10, 17]. The complete and up-
to-date documentation can be found on the NUnit website (http://nunit.org).

4.12 Internals

This section deals with differences in distinct runtimes. The two runtimes
that are discussed are Microsoft’s runtime (CLR) shipped with .NET and
the Mono runtime. Usually developers and users should not be concerned
about implementation details, because they are abstracted away. Still, rare
cases exist, where they could cause problems.

Problems can occur when serializing objects in one and deserializing
them in another implementation of the CLI. Serialized object graphs might
contain references to internal types which are only available in a specific
implementation. For instance, collections often allow to specify comparer

http://nunit.org

4. Shortcomings and Incompatibilities 36

objects to compare keys or values. An example is ObjectEqualityComparer

which is used by System.Collections.Generic.Dictionary<TKey,TValue> un-
der .NET but does not exist in Mono.

Another problem related to serialization is the internal representation
of runtime types. Internal types are an implementation detail and are not
specified by the Common Language Infrastructure. Microsoft .NET uses
RuntimeType, whereas Mono uses MonoType, both of which can be found in the
System namespace and derive from the abstract System.Type. These types are
generally not directly visible to application code, but are part of serialized
objects.

Different implementations of the garbage collector, which exhibit differ-
ent collection patterns, might cause problems as well. Usually, the different
GCs should not have a functional impact on applications. There might be
race conditions, however, that only show with a particular GC configuration.
These errors must be fixed in the application, but they can be very hard to
track down.

Chapter 5

Case Study –
HeuristicLab 3.3

Over the course of this master thesis, a case study on the practicability
of porting HeuristicLab to Mono and Linux was conducted. The following
sections give the reader an overview over HeuristicLab’s general architec-
ture and what components and technologies are used by the HeuristicLab
framework.

Thereafter, incompatible code, data, and components of the HeuristicLab
project are identified. In each section, the changes required to compile and
execute HeuristicLab under Mono are described. The majority of problems
in these sections are already familiar to the reader, who was introduced to
potential problem areas in the chapter Shortcomings and Incompatibilities.
This time, the aforementioned solutions are applied to a concrete project.

Not all components could be converted to be fully compatible with Mono.
This is mentioned in the respective sections, with possible further steps to
take. Some fixes are required in the source code of the Mono project itself
too.

5.1 About HeuristicLab

HeuristicLab is a paradigm independent and extensible environment for
heuristic optimization and data analysis and was initiated by Prof. (FH)
Priv.-Doz. DI Dr. Michael Affenzeller and Prof. (FH) DI Dr. Stefan Wagner
in 2002 [39, 38]. It has since been developed by the team of the Heuris-
tic and Evolutionary Algorithms Laboratory (HEAL)1. HeuristicLab is an
open-source project and is licensed under the GNU General Public License
(GPL). One of the project’s main goals is to provide its users with an in-
tuitive graphical user interface to create, modify and use meta-heuristic

1http://heal.heuristiclab.com

37

http://heal.heuristiclab.com

5. Case Study – HeuristicLab 3.3 38

Figure 5.1: Screenshot of the HeuristicLab 3.3.6 Optimizer under .NET on
Windows

optimization algorithms, even for users without special training in software
development.

Figure 5.1 shows a screenshot of the Optimizer plug-in of Heuristic-
Lab 3.3.6 under .NET on Windows. The window contains different views
for a Traveling Salesman Problem and a Symbolic Classification algorithm.
A look and feel similar to that of Microsoft Visual Studio is provided and
views can be arranged freely. Charts are able to provide additional visual
representations of certain parameters.

Users can construct algorithms graphically by using drag and drop and
customize almost every detail of an algorithm to suit their needs. A flexible
plug-in infrastructure enables developers and users to extend HeuristicLab
without re-compiling the complete source code.

Algorithms and problems are orthogonally independent and can be freely
combined. This enables researchers to remain highly flexible when searching
for suitable algorithms for their problems.

The current release of HeuristicLab offers its users a lot of predefined
problems and algorithms. The following list should give a quick glance at
common problems that can be optimized with HeuristicLab:

5. Case Study – HeuristicLab 3.3 39

� Traveling Salesman Problem (TSP)

� Vehicle Routing Problem (VRP)

� Quadratic Assignment Problem (QAP)

� Knapsack Problem

� Several data analysis problems: Clustering, Single- and Multi-Objective
Regression, Single- and Multi-Objective Symbolic Classification

Every problem can be optimized with any of the available algorithms,
if appropriate manipulation operators are provided. Algorithms contain an
operator graph which defines the order in which operations are applied to a
problem. Some algorithms provided with the default installation of Heuris-
ticLab 3.3 are:

� Evolution Strategy

� A set of genetic algorithms: a classical Genetic Algorithm, Offspring
Selection Genetic Algorithm, Island Genetic Algorithm, Island Off-
spring Selection Genetic Algorithm, NSGA-II, SASEGASA

� Local Search

� Particle Swarm Optimization

� Simulated Annealing

� Variable Neighbourhood Search

� Tabu Search and Robust Tabu Search

� Various data analysis algorithms: Nearest Neighbour, Neural Network,
Random Forest, Support Vector Machines

Algorithms are executed by one of the available engines, which can be
chosen by the user before running an algorithm. Engines are responsible
for executing operations from the operator graph that is provided by an
algorithm. HeuristicLab currently offers three distinct engines:

� Sequential Engine: This is the basic engine which simply executes
an algorithms operator graph in a sequential fashion. Algorithm per-
formance does not increase when this engine is used on a multi-core
system.

� Parallel Engine: The parallel engine can take advantage of multiple
CPUs on a single system and can improve performance significantly.
This engine is based on the Microsoft Task Parallel Library (TPL).
Parallel instructions are modelled with special parallel operators in
the operator graph.

� Debug Engine: The debug engine was introduced to help developers
and algorithm designers to precisely monitor and control algorithm
execution. Algorithms can be single stepped with this engine and their
state can be inspected at any time.

5. Case Study – HeuristicLab 3.3 40

5.2 Architecture

This section outlines HeuristicLab’s general architecture on a technical level.
Having a picture of the overall architecture helps with pinpointing critical
components and identifying potential problems that might arise during the
porting phase.

HeuristicLab is written in C# and currently requires the .NET Frame-
work 4.0. It utilizes Windows Forms to provide a graphical user interface.
The default docking interface is implemented using the third party Dock-
Panel Suite2. HeuristicLab is built using a modular approach and can be
extended by writing plug-ins. The plug-ins are loaded dynamically with the
reflection mechanism.

Figure 5.2 schematically shows HeuristicLab’s core components and their
relationships. For a detailed overview, refer to the documentation, which can
be found in the HeuristicLab source code repository3.

5.2.1 External Libraries

HeuristicLab uses a number of external, third-party libraries to provide com-
mon functionality. Following is a list of the libraries which are shipped as
part of HeuristicLab’s source code, but were not developed by the Heuris-
ticLab team:

� ALGLIB4 is a portable library for numerical analysis and data pro-
cessing. HeuristicLab uses ALGLIB for its DataAnalysis plug-in.

� DayView Calendar offers a Windows Forms control which presents
its users with a calendar, similar to that of Microsoft Outlook, to
visualize scheduling events5. HeuristicLab uses the DayView Calendar
Control in its Hive Admin Client.

� LibSVM is a library for Support Vector Machines6. It is used for
vector classification, regression and distribution estimation.

� Apache log4net7 provides a logging infrastructure for .NET applica-
tions. log4net is a .NET port of the popular Apache log4j Java project.

� The Netron Diagramming Library provides a graphical control for
Windows Forms, which allows users to create and manipulate networks
of objects. Users of HeuristicLab use it when working with operator

2http://dockpanelsuite.sourceforge.net/
3http://dev.heuristiclab.com/trac/hl/core/browser/trunk/documentation
4http://www.alglib.net/
5http://calendar.codeplex.com/
6http://www.csie.ntu.edu.tw/∼cjlin/libsvm/, LIBSVM – A Library for Support Vector

Machines
7http://logging.apache.org/log4net/

http://dockpanelsuite.sourceforge.net/
http://dev.heuristiclab.com/trac/hl/core/browser/trunk/documentation
http://www.alglib.net/
http://calendar.codeplex.com/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://logging.apache.org/log4net/

5. Case Study – HeuristicLab 3.3 41

Analysis Encodings.*

Problems.* Algorithms.*

Random Selection

*Engine Operators

Programmable Op. Optimization

Core Data GraphVisualization

Parameters Instances.* Optimizer

Clients.Common Collections WindowsForms CodeEditor

Tracing/Logging Persistence MainForm ControlExtensions

CLI compliant runtime: .NET 4.0, Mono

Unit Tests

*.Views

Optimization Operators

Common, Resources, External Libraries

HeuristicLab.PluginInfrastructure

Models ViewsF
o
u
n
d
a
ti

o
n
s

B
a
se

C
o
re

O
p
ti

m
iz

a
ti

o
n

Figure 5.2: Architectural overview of the HeuristicLab 3.3 optimization
framework

graphs of algorithms. A project website does not exist anymore and
the project was officially discontinued8.

� ProtoBuf is a popular library by Google to implement efficient pro-
tocols in an object-oriented way9. It is used by HeuristicLab to offer
interoperability with external systems.

� SharpDevelop.TextEditor is part of the SharpDevelop IDE and
was used as the text editing component within SharpDevelop. It has
been replaced with AvalonEdit in SharpDevelop 4. HeuristicLab uses
SharpDevelop.TextEditor to provide syntax highlighting when defining
an programmable operator (HeuristicLab.Operators.Programmable).

8http://visualizationtools.net/default/so-netron-is-back-online/, So Netron is back on-
line?!

9https://developers.google.com/protocol-buffers/

http://visualizationtools.net/default/so-netron-is-back-online/
https://developers.google.com/protocol-buffers/

5. Case Study – HeuristicLab 3.3 42

� DockPanel Suite10 provides a graphical user interface with docking
capabilities for Windows Forms, similar to those of Microsoft Visual
Studio. HeuristicLab uses the DockPanel Suite library in its default
graphical front end of its optimizer, namely DockingMainForm.

5.3 Required Packages

The system used to port HeuristicLab to Mono was Ubuntu Linux 12.04
(“Precise Pangolin”), with Mono and MonoDevelop built from the master
branch of the official Mono source code repository to have the latest features
and fixes available.

The following list contains the packages that are necessary to successfully
compile and execute HeuristicLab under Mono on Linux. Each package can
be installed with Ubuntu’s package manager, unless noted otherwise:

� Mono Mono runtime, Mono compiler, and Mono core libraries. The
current version, obtainable from the Mono Git repository, is 2.11.x.
The steps required to compile and install Mono from source are out-
lined in the next section.

� MonoDevelop The MonoDevelop IDE is recommended for develop-
ing and building HeuristicLab. MonoDevelop can be installed with
Ubuntu’s package manager, but it is advisable to build it from source
as well. It also provides an integrated test runner for NUnit test files
(see below).

� protoc protoc (Protocol Buffer compiler) is required for compiling
Google Protocol Buffer descriptions from .proto files to actual source
code.

� NUnit The NUnit test suite is required to run the unit tests provided
by HeuristicLab. NUnit is a cross-platform unit testing framework and
was chosen as a replacement for the MSTest framework, previously
used by HeuristicLab.

� SubWCRev HeuristicLab relies on dynamically generated source files
where placeholders get replaced by their revision number from the
source control system. This ensures that plug-in assemblies built from
different revisions can be distinguished by their assembly version num-
ber. HeuristicLab makes use of the command line program SubWCRev
for this purpose, which is included in the Windows Subversion client
TortoiseSVN. A port, svnwcrev, is available for Linux systems11. Al-
ternatively, SvnRev12 can be used on Linux.

10http://dockpanelsuite.sourceforge.net/
11http://svnwcrev.tigris.org/
12http://www.compuphase.com/svnrev.htm, SvnRev: a utility for Subversion and

CVS/RCS

http://dockpanelsuite.sourceforge.net/
http://svnwcrev.tigris.org/
http://www.compuphase.com/svnrev.htm

5. Case Study – HeuristicLab 3.3 43

� Other libraries A number of other packages is required for Heuris-
ticLab to run in Ubuntu. When using the Mono package provided
by Ubuntu’s package manager, these dependencies are automatically
installed. Additional packages that need to be installed on a default
installation of Ubuntu are: libpango1.0-dev, libgtk2.0-dev, libmono-
cairo2.0-cil, libmono-winforms2.0-cil, and libgdiplus.

Only the Mono runtime with its core libraries and the libraries mentioned
in Other Libraries are required to run HeuristicLab. All other packages and
programs are only required for developers who want to build HeuristicLab
from source.

5.3.1 Building Mono

This section shortly describes the steps that are required to build Mono from
source and how to install the prerequisites. Building from source not only
enables the latest features and bug fixes, but also allows to apply custom
patches to the Mono source code, that might be necessary while initially
porting an application.

To automate the build process of Mono and additional libraries and
tools (such as the MonoDevelop IDE), a bash script13, which can be found
on GitHub, was utilized. The script install most of the build dependencies
automatically, but some packages had to be installed manually.

Packages required to download and build Mono’s source code are git,
autoconf, automake, libtool, build-essential and mono-gmcs. mono-

gmcs is required for the so-called bootstrapping, since parts of Mono require
a Mono compiler to be present. Other packages necessary to compile the
basic parts of Mono are libglib2.0-dev, libpng12-dev and libx11.

After installing these packages, the bash script should complete without
errors. The installer script installs Mono in a separate directory and even
allows to install and use different versions of Mono concurrently.

5.4 MoMA Report

Reports generated by MoMA help developers to get an initial overview of
assemblies which use features that are unsupported by Mono. All analyzed
HeuristicLab assemblies were taken from the HeuristicLab 3.3.6 release,
available in the download section of the HeuristicLab website14. The Mono
Migration Analyzer is presented in Section 4.1 of this thesis.

Since HeuristicLab requires a recent version of Mono that supports the
.NET 4.0 features, it was necessary to create and add a new definition file
that contains an up to date list of supported classes and methods. Analyzing

13https://github.com/firegrass/mono-installer-script
14http://dev.heuristiclab.com/trac/hl/core/wiki/Download

https://github.com/firegrass/mono-installer-script
http://dev.heuristiclab.com/trac/hl/core/wiki/Download

5. Case Study – HeuristicLab 3.3 44

the assemblies with MoMA definitions for version 2.11 of Mono finds 1214
missing methods, 36 P/Invoke calls, 16 methods throwing NotImplement-
edExceptions, and 173 methods marked with [MonoTODO]. 72 assemblies pass
the initial analysis and 36 assemblies are likely to cause problems with this
version of Mono.

MoMA identified potential problems in the following HeuristicLab as-
semblies. Assembly names starting with “HeuristicLab.” were shortened to
“HL.” to improve readability.

� MonoTODO Multiple assemblies call methods that are marked with
the MonoTODO attribute:

� HL.Data.Views-3.3

� HL.Operators.Programmable-3.3

� HL.PluginInfrastructure-3.3

� ICSharpCode.NRefactory

� ICSharpCode.SharpDevelop.Dom

� P/Invoke A small number of assemblies are identified by MoMA to
call unmanaged, native code (P/Invoke). An in-depth discussion of
these assemblies can be found in Section 5.5.1.

� HL.MainForm.WindowsForms-3.3

� ICSharpCode.SharpDevelop.Dom

� ICSharpCode.TextEditor

� WeifenLuo.WinFormsUI.Docking-2.3.1

� Method Missing MoMA reports several assemblies in the category
“Method Missing”. These assemblies reference the external Microsoft
Chart Controls library, which is not fully implemented within Mono.
The workaround used for the initial prototype of HeuristicLab is pre-
sented in Subsection 5.5.2.

� HL.Analysis.Views-3.3

� HL.Optimization.Views-3.3

� HL.Problems.DataAnalysis.Symbolic.Regression.Views-3.4

� HL.Problems.DataAnalysis.Views-3.4

� HL.Visualization.ChartControlsExtensions-3.3

Furthermore, some assemblies were listed in the MoMA report, caused
by methods being marked with the MonoTODO attribute and the comment
“Implement it properly once 4.0 impl details are known”. These methods are
used to test System.Type types for equality and inequality. Currently, Mono
only tests identity and compares the addresses of both arguments (Object.
ReferenceEquals), but that has not caused any problems for HeuristicLab.
Hence, assemblies reported due to this attribute are ignored in the further
discussion.

5. Case Study – HeuristicLab 3.3 45

5.5 Necessary Changes

This and the following sections present problem areas that have been iden-
tified while porting the HeuristicLab optimization framework to Mono and
Linux.

Problems can be split into two major groups: compile time problems and
runtime problems. Compile time problems are often easier to find, since they
make the compilation of the source code impossible. Runtime problems on
the other hand, can remain unrecognized for a long time, because they are
only discovered by thorough testing or by accident. Good unit tests can help
to discover runtime problems much earlier.

5.5.1 Fixing Platform Dependencies

This subsection deals with problems that are not directly related to the
different implementations of the CLI standard, but problems which occur
when working with different operating systems or different toolchains. Ex-
amples are differences in file systems, incompatibilities between IDEs, or
non-portable testing frameworks.

Case Sensitive File Paths

In Chapter 4 an overview of the potential problems when running appli-
cations across different file systems was given. Different file systems use
different directory delimiters or handle case sensitivity of file names differ-
ently.

The project files for HeuristicLab contained some file paths with different
capitalization compared to actual file on disk. This is quickly discovered dur-
ing compilation, because the compile process will abort due to non-existent
files. Resource files also contain file paths that need to be corrected before
the build process can complete successfully.

As mentioned in the introductory paragraphs, compile time errors are
relatively easy to find. Some paths of HeuristicLab are only looked up during
program execution. One such case is the dependency list and external file
list of plug-ins. Required, external files are declared by attaching custom
attributes of type PluginFileAttribute to classes which are evaluated when
loading a plug-in. This is not an error per-se, but HeuristicLab will be unable
to find all required dependencies or files, and consequently fail to load the
plug-in.

To find plug-in file paths with incorrect capitalization, a temporary hook
was added in the method that is responsible for loading plug-ins together
with their referenced files. By default, HeuristicLab simply ignores plug-ins
with inexistent, referenced files. Here, HeuristicLab could be extended to be
more verbose or write a log file when a plug-in is not loaded due to referenced
but missing files.

5. Case Study – HeuristicLab 3.3 46

Build Events and Scripts

HeuristicLab uses build event scripts to create actual source code files, that
contain plug-in interface definitions, from .cs.frame files, by running the
SvnRev utility before compilation is started. The same procedure is applied
to protocol buffer definitions – they are transformed into actual classes by
calling the protoc and ProtoGen programs. After the build is complete, build
products are copied to a common directory accessible by all projects of the
solution.

Several migration paths for build events and scripts were presented in
section “Compiling Files and Building Projects” of Chapter 4. For the first
prototype of HeuristicLab for Mono, it was decided to write shell scripts
which mimic the behavior of the original batch files.

Platform Invoke

P/Invoke is the CLI’s mechanism of invoking native code from machine
dependent libraries. Its problems and possible solutions have been presented
in Chapter 4. This section shows which components of HeuristicLab rely on
P/Invoke to call functions from native libraries.

Native platform invocations can be found by disassembling Heuristic-
Lab’s assemblies with monodis and using the grep command line utility to
search the output for pinvokeimpl. Alternatively, the NativeProbe tool15

could have been used [10]. As a result, several assemblies with P/Invoke
calls were identified:

� HeuristicLab.MainForm.WindowsForms This project has a sin-
gle reference to SendMessage of user32.dll. It is used to set the sus-
pend and resume redrawing of the window. Removing the call had no
directly visible, averse effect on HeuristicLab.

� WeifenLuo.WinFormsUI.Docking The external DockPanel Suite
library uses multiple P/Invoke calls to interact directly with applica-
tion windows and the mouse (14 calls to user32.dll and one call to
kernel32.dll). HeuristicLab provides three distinct front ends for its
Optimizer plug-in: Docking, MultipleDocumentMainForm, and Single-
DocumentMainForm. Users are able to configure which front end to
use since SVN revision 6827 (2011-09-25). Specific code will be added
to HeuristicLab to make the docking front end unavailable to users on
non-Windows systems, and provide them with the MultipleDocument-
MainForm front end as fallback instead.

15http://www.tebiki.co.uk/cross-platform/ downloads/NativeProbe 0.2.zip, The Na-
tiveProbe Tool

http://www.tebiki.co.uk/cross-platform/_downloads/NativeProbe_0.2.zip

5. Case Study – HeuristicLab 3.3 47

� ICSharpCode.TextEditor The TextEditor component of SharpDe-
velop has eight P/Invoke calls in its source code. A blogpost16 dating
back to 2008 counted 15 P/Invoke calls using MoMA and provides fully
managed code to replace some pieces of ICSharpCode.TextEditor. The
code from the blogpost relies on compiler directives, which means the
same assembly cannot be shared between Mono and .NET. Most of
these directives can be easily replaced with a factory pattern.

� ICSharpCode.SharpDevelop.Dom This library is referenced from
the ICSharpCode.TextEditor assembly. It imports eight functions from
fusion.dll and one function from shfusion.dll. Fortunately, these
functions are neither called directly nor indirectly from the ICSharp-
Code.TextEditor library.

� log4net The log4net project supports a wide range of CLI implemen-
tations (different .NET releases, Mono). Distinct assemblies exist for
each target runtime. log4net uses numerous Appenders to generate log
output on different output channels. Not all runtimes support the same
appenders; for instance, Mono lacks support of ColoredConsoleAppen-
der, NetSendAppender, and OutputDebugStringAppender17. These ap-
penders are not used from within HeuristicLab or its libraries and the
lack thereof should not pose a problem. HeuristicLab references log4net
from the external library ICSharpCode.SharpDevelop.Dom and from
some unit test projects. Classes from log4net which rely on P/Invoke
calls are hidden with compiler directives.

� Netron.Diagramming.Core This library contains two Platform In-
voke calls. One is SHGetFileInfo in shell32.dll, the other is BitBlt

in gdi32.dll. BitBlt is actually unused by the Netron code and never
referenced. SHGetFileInfo is called in a single code path which is not
required by HeuristicLab. The Netron.Diagramming library should
therefore not cause problems with HeuristicLab under Mono, because
only managed code is executed.

5.5.2 Missing Charting Library

HeuristicLab uses the Microsoft Chart Controls to draw interactive plots and
graphs. These controls are not available under Mono. One alternative is the
ZedGraph project mentioned in Chapter 4. For this case-study a workaround
was needed, which did not require re-writing all code parts, that were re-
sponsible for generating charts, to use ZedGraph instead.

The workaround for this problem was inspired by the previous section. If
the Microsoft Chart Controls assembly did not contain P/Invoke calls, then

16http://alisdairlittle.blogspot.com/2008/11/mono-version-of-icsharptexteditor.html,
Mono Version of ICSharp.TextEditor

17http://logging.apache.org/log4net/release/framework-support.html, Apache log4net:
Supported Frameworks

http://alisdairlittle.blogspot.com/2008/11/mono-version-of-icsharptexteditor.html
http://logging.apache.org/log4net/release/framework-support.html

5. Case Study – HeuristicLab 3.3 48

Figure 5.3: A line graph drawn with the assembly Windows.Forms.

DataVisualization under Mono

it should be possible to use the same assembly under any CLI compliant
implementation. Again, the assembly file was passed to monodis and its out-
put checked for the occurrence of pinvokeimpl. Zero matches indicated an
assembly with fully managed code. Mono should be able to consume such
an assembly.

After copying the assembly and referencing it from the proper project
files, the solution compiled without errors. Executing the application prop-
erly displays the charts in HeuristicLab executed under Mono and allows
users to interact with them just like under .NET. Figure 5.3 shows a chart
in Mono with a plot of symbol frequencies of a Genetic Programing algo-
rithm.

However, this assembly cannot be distributed with HeuristicLab, because
its license is incompatible with the GPL. Microsoft forbids the usage of its
.NET DLLs on platforms other than Windows too. As a consequence, this
is only a temporary workaround until a better solution is found or all charts
are re-implemented with ZedGraph.

5.5.3 Unit Tests

The HeuristicLab optimization framework source code comes with a suite of
unit tests for its core and its important plug-ins. These unit tests are cur-
rently written to be run with the MSTest framework. Relying on Microsoft’s
unit testing framework is not an option, if HeuristicLab should run and com-
pile under different CLI implementations. Some alternatives to MSTest were

5. Case Study – HeuristicLab 3.3 49

listed in Section 4.11, in particular NUnit. It also showed the first steps of
converting existing, simple tests to NUnit tests.

HeuristicLab’s original unit tests use standard features of the testing
framework, and are written using Assert.IsTrue and Assert.AreEqual state-
ments mostly. These simple statements can be adopted wholesale for use
with the NUnit framework.

Most test attributes could be replaced by employing text substitution,
as presented in Section 4.11. Other attributes, such as DeploymentItem and
TestContext are MSTest specific and do not exist in NUnit. The route that
was chosen for HeuristicLab is to alias TestContext to System.IO.TextWriter

to have all output redirected to the console. DeploymentItem copies files,
e.g. compiled assemblies, to the test directory. A näıve implementation was
added to HeuristicLab to be used with NUnit.

MSTest makes use of accessor objects which are automatically created
by Visual Studio for each class that is tested. They allow to access of private
methods from unit tests. These accessor objects are missing when running
the tests with NUnit. For HeuristicLab a simple class Accessor was written,
which acts as proxy and calls the original methods with the reflection mech-
anism of the CLI. Another possibility is the dynamic creation of distinct
accessor classes for each type through code generation mechanisms, such
as Reflection.Emit or System.CodeDom. This option was not researched over
the course of this thesis, because only a minimum number of accessor classes
were required.

5.5.4 Persistence Layer

HeuristicLab allows users to pause algorithms, store their current state to
disk, and at a later date restore them and continue the algorithm execution.
This is provided through the Persistence plug-in, which was developed for
HeuristicLab 3.x. It is able to serialize complex, arbitrary object graphs used
by HeuristicLab and deserialize them identically.

Of course, it should be possible to persist algorithms and problems with
one implementation of the CLI and to restore them with a different imple-
mentation. Great care was already taken to guarantee proper deserialization
when a plug-in versions change.

The persistence layer fully serializes the complete object graph and type
information. This is a problem, because it includes the non-publicly visible
internal runtime type. The .NET framework represents types internally as
System.RuntimeType, whereas Mono uses System.MonoType. Confer Chapter 4
for a general explanation of the subject matter.

ObjectEqualityComparer, the default comparer of the generic Dictionary

class, is not implemented either, because it is an implementation detail of
the .NET Framework (see section “Internals” of Chapter 4). There was at

5. Case Study – HeuristicLab 3.3 50

least one open bug report18 about this issue at the time this thesis was
written. Using an adapted version of the workaround mentioned in the bug
report it is possible to mitigate this problem within HeuristicLab. The code
can be seen in Listing 5.1.

Listing 5.1: ObjectEqualityComparer implementation

1 [Serializable]

2 public class ObjectEqualityComparer<T> : EqualityComparer<T> {

3 public override int GetHashCode(T obj) {

4 return EqualityComparer<T>.Default.GetHashCode(obj);

5 }

6 public override bool Equals(T a, T b) {

7 return EqualityComparer<T>.Default.Equals(a, b);

8 }

9 }

While working on the persistence code, another bug was discovered,
which occurred when adding objects of certain types in particular order to an
object of type HashSet<object>19. Mono would throw an ArgumentException

when comparing objects that implement IStructuralEquatabla with in-
stances of Tuple<,>. This bug was fixed shortly after by the Mono devel-
opment team, and the comparison now correctly returns false instead of
throwing a runtime exception.

To be able to load .hl files saved from the .NET runtime the persistence
layer has to convert missing types to their Mono counterparts on the fly.
The same problem applies vice-versa when loading files in .NET saved from
Mono. There are two options: Always store types as Microsoft .NET’s types
or store everything as is and perform conversion in both runtimes during
deserialization.

While the first option would allow existing, unmodified versions of Heu-
risticLab to open files stored with Mono, it was decided to go with the second
option after discussing the issue with members of the HeuristicLab core de-
veloper team. Storing types which do not exist in one runtime may lead to
hard to track down errors. Using the native representation of the current
runtime is more error resistant, albeit not backwards compatible with older
versions of HeuristicLab.

The method responsible for loading and returning the correct type was
patched to properly handle missing types that are known to have a matching
type. If loading a type initially fails, the exception is caught and the type
is converted to the corresponding type of the runtime currently executing.
HeuristicLab then tries to load the new, converted type. If loading has failed
twice, the error is propagated and displayed to the user. Of course, this only

18https://bugzilla.novell.com/show bug.cgi?id=699747, Binary Serialization De-
Serialization of Dictionary

19https://bugzilla.xamarin.com/show bug.cgi?id=2455, HashSet<object> throws Argu-
mentException when inserting BindingFlag and Tuple<,>

https://bugzilla.novell.com/show_bug.cgi?id=699747
https://bugzilla.xamarin.com/show_bug.cgi?id=2455

5. Case Study – HeuristicLab 3.3 51

works for types that have a defined mapping. At the moment, mappings are
implemented for the types System.RuntimeType and System.MonoType, and
ObjectEqualityComparer. Listing 5.2 shows a simplified version of this logic.

Listing 5.2: Type loading during deserialization

1 try {

2 return LoadType(typename);

3 } catch(PersistenceException) {

4 typename = GetMatchingType(typename);

5 return LoadType(typename);

6 }

For the prototype one-directional mapping was implemented, but bi-
directional mappings can be added easily. Future enhancements might in-
clude dynamic mapping based on rules defined in an external document
which, for instance, is stored in popular XML format. This would also en-
able users and developers to extend or change mappings without recompiling
the HeuristicLab framework.

5.6 Remaining Issues and Future Tasks

Not all issues could be addressed while working on the initial port of Heu-
risticLab, which should compile and execute under Mono. It is likely that
many issues go unnoticed for a while and will only be uncovered after ex-
tensive everyday use of HeuristicLab in the Mono environment. This section
should give an overview over issues that have been identified over the course
of this thesis, but take a longer time to get fixed properly. Several fixes are
also required directly in the source code of Mono’s class libraries.

5.6.1 ZedGraph Charting Library

Currently, the HeuristicLab framework requires the file System.Windows.

Forms.DataVisualization.dll of the .NET Framework to be present. This
file is not distributed with Mono and only exists as part .NET, however,
it can be used by Mono after copying it manually. The problem is, that
Microsoft does not permit customers to use .NET assemblies outside of
.NET.

ZedGraph is an open-source library that provides charting support for
the .NET Framework, as well as for Mono. All references to types from the
System.Windows.Forms.DataVisualization namespace have to be replaced
in HeuristicLab’s code base by their corresponding ZedGraph counterparts.
Alternatively, an additional abstraction layer could be introduced, which
does not depend on the underlying library and would allow simple selection
of the proper charting library.

5. Case Study – HeuristicLab 3.3 52

5.6.2 HeuristicLab Hive

For the first proof-of-concept prototype of HeuristicLab with Mono, a port
of the HeuristicLab Hive infrastructure was not considered, since the main
focus was on getting the core infrastructure running. HeuristicLab Hive is an
elastic and scalable infrastructure for executing any type of application dis-
tributed across a multitude of systems. The HeuristicLab Hive infrastructure
is presented in a paper by several members of HEAL [29].

HeuristicLab Hive is implemented using WCF. Hive clients and servers
communicate over the wsHttpBinding and net.pipe bindings. To allow the in-
tegration of Hive slaves executed by Mono, wsHttpBinding must be changed
to a binding that is supported by Mono’s implementation of the WCF stack.
ServiceStack promises to be a good replacement for WCF, but first it has
to be evaluated, whether a switch to ServiceStack makes sense or not.

5.6.3 Windows Forms

Windows Forms (System.Windows.Forms) is implemented within Mono, and
provides a good basis most of the time. However, Mono’s implementation
is not 100 % compatible with the .NET implementation by Microsoft. Some
methods are only implemented as stubs that return dummy values or are
not implemented at all (DataGridViewColumn.GetPreferredWidth is one such
example, and always returns 0). Fixes must be made directly in the source of
these libraries (mcs/class/Managed.Windows.Forms/), and some changes
already made their way into the official Mono repository.

A number of Dispose() methods were patched in classes related to Win-
dows Forms Toolstrips (ToolStrip and ToolStripDropDownItem). Previously,
they were disposing child components multiple times, which would result
in runtime exceptions being thrown by the garbage collector. Interestingly
enough, no exceptions were thrown when using the newer SGen garbage col-
lector of Mono. Also, ToolStripItem was adapted to not re-calculate its size
if the owning control is unset (this would throw an exception as well).

HeuristicLab offers drag and drop functionality for most of its views and
components. Users can, for example, move a problem instance on another al-
gorithm view to quickly try different algorithms or parametrization options.
Operator graphs are constructed by dragging operators from the operator
view to the operator graph window.

Over the course of this thesis, drag and drop functionality sometimes
ceased working in an unreproducible manner. The cause for this is still
unknown and yet to be found. For the operator graph window this problem
can be easily circumvented by adding a new button to select operators from a
list and add them to the graph directly without detouring via drag and drop.
However, this is not trivially possible for other view types. One approach

5. Case Study – HeuristicLab 3.3 53

would be to offer users a tree view of all open windows and views. Users
would then be able to add views by selecting them from this tree.

5.7 Performance Analysis

This section compares the performance of HeuristicLab when executed un-
der different implementations of the CLI. It should help to detect potential
bottlenecks in different implementations or configurations. There are three
major configurations of environments in which HeuristicLab will be used:

� .NET (on Windows) This is the default configuration and the basis
of comparison. In the past, HeuristicLab was exclusively executed in
this configuration. For running the benchmarks of this thesis, .NET 4.0
was run on Windows 7.

� Mono on Linux This will be the main configuration when Heuristic-
Lab is run on other operating systems besides Microsoft Windows.
For the benchmarks of this thesis the Ubuntu operating system in ver-
sion 12.04 (“Precise Pangolin”) was chosen. The Mono runtime and
libraries were built from the Mono Git repository.

� Mono on Windows This configuration is likely to be less important,
because most users use the Microsoft .NET Framework when running
HeuristicLab on a Windows system. The alpha version Mono 2.11.2
was used on Windows 7 to get results for this configuration.

No benchmarks on other operating systems were performed.
Algorithm execution under Mono is tested in two configurations: on the

one hand with the default garbage collector (Boehm) and on the other hand
with the newer SGen garbage collector.

HeuristicLab comes with a number of common benchmark problems
(TSPLIB, QAPLIB). The default installation of HeuristicLab also comes
with a number of sample problems and algorithms. Several samples were
selected and used in the benchmarking process, as listed below:

� A Particle Swarm Optimization algorithm, which tackles the 2-dimen-
sional Schwefel test function.

� A Simulated Annealing algorithm which tackles the 2-dimensional Ras-
trigin test function.

� A Genetic Programming algorithm which tackles a symbolic classifi-
cation problem.

� A Genetic Algorithm which tackles the “ch130” problem instance, im-
ported from TSPLIB.

� A Tabu Search algorithm which tackles the same “ch130” problem
instance.

� A Genetic Algorithm which tackles the “C101” Vehicle Routing prob-
lem from Solomon.

5. Case Study – HeuristicLab 3.3 54

One algorithm and problem combination that was benchmarked, which is
not available as a sample in HeuristicLab, is a Evolution Strategy algorithm
which tackles a Quadratic Assignment Problem. Additionally, the Heuris-
ticLab benchmark plug-in allows to run several performance benchmarks
(Dhrystone [41], Whetstone [6], Linpack [8]).

For each of the problems, a HeuristicLab batch run experiment of the
given instance was created with 50 repetitions. Execution times are recorded
directly within the experiment file. Each algorithm was executed with the
parallel engine as well as with the sequential engine, offered by Heuristic-
Lab. The remaining parameters of the algorithms were left unmodified at
their default values. The actual parameter values are listed in the respective
subsection of each algorithm.

Only algorithm execution time is measured in the benchmarks. Other
aspects, such as startup time, time to load and save files, etc. were left
aside, since the major portion of time the HeuristicLab framework is used
to tackle optimization problems. Achieving high solution quality is not a goal
of this thesis; cf. other papers specifically dealing with modeling and con-
figuration of meta-heuristic optimization algorithms with the HeuristicLab
framework [40, 3, 1].

The machine that was used for the performance analysis tests was a
state-of-the art desktop PC with an Intel Core2Duo E8400 CPU clocked at
3.0 GHz and 4 GB of RAM (other hardware factors are negligible for testing
HeuristicLab’s algorithm execution performance). The different operating
systems were installed on separate partitions, and all operating systems were
installed as 64 bit versions. Windows 7 was installed on two partitions, one
time in combination with .NET Framework 4.0, and one time with a current
build of Mono. The third partition contained Ubuntu Linux 12.04 (“Precise
Pangolin”), with a custom version of Mono built from source. To run the
performance tests, HeuristicLab was compiled without debug information
(Release configuration).

Following is a presentation of the exact configuration of each algorithm
and problem, as well as a detailed discussion of the results obtained from
the benchmarks.

5.7.1 Results

This section presents the execution time results obtained by applying meta-
heuristic algorithms to known optimization problems. First, the results of
executing the three benchmarks Whetstone, Dhrystone, and Linpack are pre-
sented. A few selected algorithms and problems are then presented and com-
pared. In particular, two popular optimization problems, Travelling Sales-
man [13] and Quadratic Assignment [22], were employed to obtain measure-
ments of execution time, used to compare performance of HeuristicLab in
different environments.

5. Case Study – HeuristicLab 3.3 55

Parameter settings for algorithms and problems are displayed in tabular
form. The top section contains the problem parameters, and the bottom
section of the table contains the settings for the algorithm. Settings marked
with an em-dash (“—”) denote an empty setting (null in HeuristicLab).
Most of the tested algorithm-problem combinations are shipped with Heu-
risticLab as sample files, but their parameter settings are mentioned here
for reference and repeatability.

The results are visualized in the form of box plots. The box plots show
a number of representative values of the execution time data, which was
obtained from executing algorithms in different environments. Lower and
upper quartiles are represented by the box; the median is plotted as solid
line inside the box. Top and bottom whiskers are placed at the minimum
and maximum values of the data samples, and a dashed line is placed at the
arithmetic mean value. Median values are additionally printed left of each
box numerically.

Each box plot shows eight configurations at most: parallel execution
with .NET, Mono, Mono on Windows, and Mono with the SGen garbage
collector (labeled as “SGen”) – benchmark runs with the sequential engine
are marked by appending “Seq.” to their respective label.

It is worth mentioning that executing algorithms with the parallel en-
gine under Mono did not result in the expected performance improvement.
Actually, the opposite was the case: Performance was often worse compared
to execution with the sequential engine. This is most likely due to a different
scheduling strategy under Mono or might be caused by overhead incurred
during task switches.

Benchmarks: Whetstone, Dhrystone, and Linpack

Only two parameters are available for each benchmark: ChunkSize and
TimeLimit, both of which were left at their default value of 0.

The results of each benchmark algorithm is shown in Table 5.1. The table
only lists the arithmetic mean value for each algorithm and configuration; no
error ranges are displayed, since the result data showed very little variance.
Higher values relate to better performance. Values in parentheses are relative
to the .NET results.

Mono performs slower in the Whetstone and Linpack benchmark by 26 %
and 16 %, respectively. Striking is the huge performance difference when ex-
ecuting the Dhrystone benchmark – .NET can execute 6 times more op-
erations per second. Utilizing the SGen garbage collector improved perfor-
mance under Mono by a small margin for all three benchmarks, the biggest
improvement being with the Dhrystone benchmark (7.78 % more DIPS).

Running HeuristicLab under Mono on the Windows operating system
generally resulted in worse performance, with the exception of the Linpack

5. Case Study – HeuristicLab 3.3 56

Table 5.1: Benchmark results

Dhrystone Whetstone Linpack
[DIPS] [MWIPS] [Mflops]

.NET 4321189.76 302.76 600.66
Mono 718068.94 (16.62 %) 223.52 (73.83 %) 504.27 (83.95 %)
Mono SGen 773927.90 (17.91 %) 224.00 (73.99 %) 530.91 (88.39 %)
Mono (Windows) 581542.64 (13.46 %) 146.00 (48.22 %) 514.00 (85.57 %)

benchmark, where a small increase of 1.62 percentage points can be mea-
sured, compared to Mono with the Boehm GC.

Genetic Algorithm – Travelling Salesman Problem

The HeuristicLab framework comes with the TSPLIB of the Ruprecht-Karls-
Universität Heidelberg20. TSPLIB provides a number of sample instances
for the TSP and related problems [32]. The Travelling Salesman Problem is
defined as follows:

“Given a finite number of cities and given the travel distance
between each pair of them, find the shortest tour visiting all
cities and returning to the starting point.” [23]

The problem instance for this benchmark is “ch130” from TSPLIB and
was tackled by a Genetic Algorithm. The problem and algorithm parameters
are listed in Table 5.2.

Figure 5.4 shows box plots of the execution times for the Mono and .NET
runtime environment.

.NET clearly executes the algorithm faster. Compared to Mono with
default settings it finishes more than twice as fast by 7.03 s (56.74 %). There
is little difference between running the algorithm with the parallel or with
the sequential engine under .NET. Execution times only differ by 0.3 s (5.6 %
slower).

Swapping the garbage collector from Boehm to SGen reduces execution
times under Mono by 0.85 s (6.86 % faster). Better execution times can be
achieved with the sequential engine of HeuristicLab: execution times de-
crease by 2.93 s (23.65 % faster). Combining the sequential engine with the
SGen garbage collector results in another 0.44 s lower execution time. This is
still appreciably slower than execution with .NET, even now Mono is slower
by 3.66 seconds (68.28 %).

Execution under Mono on Windows is barely faster with the parallel
engine (0.05 s, 0.4 % faster), and considerably slower with the sequential en-
gine (1.8 s, 19.03 % slower). Execution times on Windows decrease by 1.08 s

20http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

5. Case Study – HeuristicLab 3.3 57

Table 5.2: Parameter settings for a Genetic Algorithm and Traveling Sales-
man Problem

Parameter Value

Coordinates cf. ch130 TSP [32]
DistanceMatrix —
Evaluator TSPRoundedEuclideanPathEvaluator
SolutionCreator RandomPermutationCreator
UseDistanceMatrix True

SetSeedRandomly True
PopulationSize 100
Selector ProportionalSelector
CrossOver OrderCrossover2
MutationProbability 5 %
Mutator InversionManipulator
Elites 1
Analyzer MultiAnalyzer
MaximumGenerations 1000

(8.75 % faster), when comparing parallel and sequential engine. A pattern
that continues to show throughout all benchmarks is the high dispersion of
execution time data points on Windows. This is instantly visible by looking
at the box plots.

Tabu Search – Traveling Salesman Problem

This benchmark applies a tabu search algorithm to tackle the TSP “ch130”
instance imported from TSPLIB. Settings of the algorithm and the problem
are listed in Table 5.3.

Execution time results of solving the TSP instance with a Tabu Search
algorithm are shown in Figure 5.5.

.NET with the parallel engine is more than twice as fast as Mono (59.42 %
faster). Selecting the sequential engine for algorithm execution slows down
performance significantly under .NET by 10.07 seconds (55.09 % longer ex-
ecution times). In contrast to the above, execution times under Mono de-
crease by about 5 seconds (10.88 % faster) when the algorithm is executed
sequentially.

Using the SGen garbage collector instead of Boehm accounts for 5.91 sec-
onds (13.12 % slower) of longer execution time and for 4.2 s (10.46 %) with
the sequential engine. This is different from the other algorithms, where
SGen generally improved performance.

Executing the algorithm under Mono on Windows has the worst perfor-
mance. Compared to Mono on Linux, performance is worse by 8.01 s (17.78 %

5. Case Study – HeuristicLab 3.3 58

.N
ET

M
on

o
SG

en

.N
ET

Seq
.

M
on

o
Seq

.

SG
en

Seq
.

M
on

o
(W

in
dow

s)

M
on

o
(W

in
dow

s)
Seq

.

6

8

10

12

14
5
.3

6

1
2
.3

9

1
1
.5

4

5
.6

6

9
.4

6

9
.0

2

1
2
.3

4

1
1
.2

6

E
x
ec

u
ti

on
ti

m
e

[s
]

Figure 5.4: Execution times of Genetic Algorithm and the “ch130” Travel-
ing Salesman Problem

Table 5.3: Parameter settings for Tabu Search and TSP

Parameter Value

Coordinates cf. ch130 TSP [32]
DistanceMatrix —
Evaluator TSPRoundedEuclideanPathEvaluator
SolutionCreator RandomPermutationCreator
UseDistanceMatrix True

SetSeedRandomly True
MoveGenerator StochasticInversionMultiMoveGenerator
MoveMaker InversionMoveMaker
MoveEvaluator TSPInversionMoveRoundedEuclideanPathEvaluator
TabuChecker InversionMoveSoftTabuCriterion
TabuMaker InversionMoveTabuMaker
TabuTenure 60
MaximumIterations 1000
SampleSize 750
Analyzer MultiAnalyzer

5. Case Study – HeuristicLab 3.3 59

.N
ET

M
on

o
SG

en

.N
ET

Seq
.

M
on

o
Seq

.

SG
en

Seq
.

M
on

o
(W

in
dow

s)

M
on

o
(W

in
dow

s)
Seq

.

20

30

40

50

60

1
8
.2

8

4
5
.0

5

5
0
.9

6

2
8
.3

5

4
0
.1

5 4
4
.3

5

5
3
.0

6

4
8
.6

8

E
x
ec

u
ti

on
ti

m
e

[s
]

Figure 5.5: Execution times of Tabu Search and the “ch130” Traveling
Salesman Problem

slower) when executed with the parallel engine, and worse by 8.53 s (21.24 %
slower) when executed sequentially.

Evolution Strategy – Quadratic Assignment Problem

Similar to TSPLIB, HeuristicLab also contains QAPLIB21, first published in
1991 at the Graz University of Technology, and now maintained at the Uni-
versity of Pennsylvania22. QAPLIB provides a unified testbed for Quadratic
Assignment Problems [5].

The Quadratic Assignment Problem can be described as assigning a
number of facilities to locations so that the sum of transportation costs
between facilities is minimal. It can be seen as a generalized form of the
Traveling Salesman Problem [22].

The problem instance for this QAP was the “chr12a” instance from
QAPLIB and was tackled by an Evolution Strategy algorithm. Parameters
for the algorithm (bottom) and the problem (top) are listed in Table 5.4.

21http://www.opt.math.tu-graz.ac.at/qaplib/
22http://www.seas.upenn.edu/qaplib/

http://www.opt.math.tu-graz.ac.at/qaplib/
http://www.seas.upenn.edu/qaplib/

5. Case Study – HeuristicLab 3.3 60

Table 5.4: Parameter settings for Evolution Strategy and QAP

Parameter Value

Distances cf. chr12a QAPLIB [5]
Evaluator QAPEvaluator
SolutionCreator RandomPermutationCreator
Weights (chr12a)

SetSeedRandomly True
PopulationSize 20
ParentsPerChild 1
Children 100
MaximumGenerations 1000
PlusSelection True
Recombinator —
Mutator InsertionManipulator
StrategyParameterCreator —
StrategyParameterCrossover —
StrategyParameterManipulator —
Analyzer MultiAnalyzer

Figure 5.6 shows the values for execution time. Mono performs very bad
with this algorithm compared to .NET. With median values differences of
5.2 seconds, execution under Mono is slower by a factor of 3 (299.24 %).

A pattern similar to that of the execution times of the Genetic Algorithm
and “ch130” TSP emerges. Execution times can be reduced by changing the
garbage collector or by running the algorithm with the sequential engine of
HeuristicLab.

Using the SGen garbage collector in combination with sequential exe-
cution improves performance significantly (166.53 %), but it still lags be-
hind .NET by 2.08 seconds (79.7 % higher execution times). Using the SGen
garbage collector alone improves performance by 0.49 s, using the sequential
engine with the default garbage collector improves performance by 2.29 s
(29.32 % faster).

Executing the algorithm sequentially slows it down when executed under
.NET and execution times increase by 0.43 seconds (16.48 %). Parallel exe-
cution under Mono on Windows is faster by 1.21 s (15.49 % faster) compared
to Mono on Linux. The opposite is the case with the sequential engine: Mono
on Linux is faster by 1.12 s (16.87 % lower execution times)

Particle Swarm Optimization – Schwefel

The default values of the parameters of the Particle Swarm Optimization
sample are shown in Table 5.5. The top section contains problem parame-

5. Case Study – HeuristicLab 3.3 61

.N
ET

.N
ET

Seq
.

M
on

o

M
on

o
Seq

.

SG
en

SG
en

Seq
.

M
on

o
(W

in
dow

s)

M
on

o
(W

in
dow

s)
Seq

.

4

6

8

2
.6

1 3
.0

4

7
.8

1

5
.5

2

7
.3

2

4
.6

9

6
.6

6
.3

4

E
x
ec

u
ti

on
ti

m
e

[s
]

Figure 5.6: Execution times of Evolution Strategy and the “chr12a” QAP

−400 −200
0

200
400 −500

0

500

−1,000

−500

0
500

1,000

Figure 5.7: The 2-dimensional Schwefel test function, with its global mini-
mum at [−420.9687;−420.9687]

ters, while the bottom section displays algorithm specific parameters. The
PSO algorithm optimized the Schwefel test function (Equation 5.1) in two
dimensions, depicted in Figure 5.7 [27].

5. Case Study – HeuristicLab 3.3 62

Table 5.5: Parameter settings for Particle Swarm Optimization and Schwefel
test function

Parameter Value

Bounds -500 – 500
Evaluator SchwefelEvaluator
Maximization False
ProblemSize 2
SolutionCreator UniformRandomRealVectorCreator

SetSeedRandomly True
SwarmSize 50
MaxIterations 1000
Inertia 10
PersonalBestAttraction -0.01
NeighborBestAttraction 0.5
ParticleCreator RealVectorParticleCreator
Analyzer MultiAnalyzer
TopologyInitializer —
TopologyUpdate —
InertiaUpdate ExponentialDiscreteDoubleValueModifier
SwarmUpdater RealVectorSwarmUpdater

f(x) =
n∑

i=1

[
−xi sin

(√
|xi|
)]

(5.1)

The results of measuring execution times of the Particle Swarm Opti-
mization algorithm in different environments is shown in Figure 5.8. The
data points are very close and show little variance.

When executed with the Mono runtime, the algorithm needs twice as
long (206.07 %) to complete, compared to .NET.

Switching the engine from parallel to sequential had no significant effect
on .NET (0.07 s, 3.86 % slower), but improved Mono’s performance by 1.27 s
(34.04 % faster). Similar to the Evolution Strategy from the previous section,
execution under Mono on Windows was again faster with the parallel engine
(0.44 s, 11.79 %) and slower with the sequential engine (0.47, 19.11 %).

Execution times with the SGen garbage collector are missing, because
it made the Mono runtime crash. The Mono developers have been informed
about this issue.

Simulated Annealing – Rastrigin

Table 5.6 shows the parameters used for the Simulated Annealing algorithm
and the Rastrigin test function. Problem specific parameters are displayed

5. Case Study – HeuristicLab 3.3 63

.N
ET

M
on

o

.N
ET

Seq
.

M
on

o
Seq

.

M
on

o
(W

in
dow

s)

M
on

o
(W

in
dow

s)
Seq

.

2

2.5

3

3.5

4

1
.8

1

3
.7

3

1
.8

8

2
.4

6

3
.2

9

2
.9

3

E
x
ec

u
ti

on
ti

m
e

[s
]

Figure 5.8: Execution times of Particle Swarm Optimization and Schwefel
test function

in the top section and the bottom section shows the parameters of the al-
gorithm. The MaximumIterations parameter was increased from the default

−4 −2
0

2
4 −5

0

5

0

50

Figure 5.9: The 2-dimensional Rastrigin test function, with its global min-
imum at [0; 0]

5. Case Study – HeuristicLab 3.3 64

Table 5.6: Parameter settings for Simulated Annealing and Rastrigin test
function

Parameter Value

Bounds -5.12 – 5.12
Evaluator RastriginEvaluator
Maximization False
ProblemSize 2
SolutionCreator UniformRandomRealVectorCreator

SetSeedRandomly True
MaximumIterations 1000
InnerIterations 50
StartTemperature 1
EndTemperature 0.000001
Analyzer MultiAnalyzer
MoveGenerator StochasticNormalMultiMoveGenerator
MoveEvaluator RastriginAdditiveMoveEvaluator
MoveMaker AdditiveMoveMaker
AnnealingOperator ExponentialDiscreteDoubleValueModifier

value of 100 to 1000 in order obtain more representative values for this
benchmark. The Simulated Annealing algorithm optimized the Rastrigin
test function (Equation 5.2) in two dimensions [27]. Figure 5.9 shows a plot
of the Rastrigin function.

f(x) = 10n+

n∑
i=1

[
x2i − 10 cos(2πxi)

]
(5.2)

The results obtained from running the Simulated Annealing algorithm
on different systems can be found in Figure 5.10.

Once again, performance of Mono can be improved by choosing the SGen
garbage collector. It resulted in a decrease of execution time of 0.26 s (11.76 %
faster) with the parallel engine and 0.3 s (13.27 % faster) with the sequential
engine. The fastest configuration of Mono (parallel execution, SGen) is 0.26 s
(15.38 %) slower than .NET.

Executing the algorithm sequentially lead to slightly worse performance
with Mono (2.26 % slower). The difference under .NET was barely measur-
able: sequential execution resulted in 0.01 s longer execution time (0.59 %
slower). Mono on Windows was slower for both engines by a large margin.
Compared to execution times under Mono with normal settings, execution
times were higher by 0.71 (32.12 % slower) with the parallel engine and by
0.69 s (30.53 % slower) with the sequential engine.

5. Case Study – HeuristicLab 3.3 65

.N
ET

M
on

o
SG

en

.N
ET

Seq
.

M
on

o
Seq

.

SG
en

Seq
.

M
on

o
(W

in
dow

s)

M
on

o
(W

in
dow

s)
Seq

.

2

2.5

3
1
.6

9

2
.2

1

1
.9

5

1
.7

2
.2

6

1
.9

6

2
.9

2

2
.9

5

E
x
ec

u
ti

on
ti

m
e

[s
]

Figure 5.10: Execution times of Simulated Annealing and Rastrigin func-
tion

This algorithm was the only one besides Genetic Programming for which
the parallel engine performed better for all configurations.

Genetic Algorithm – Vehicle Routing Problem

This benchmark test tackles the C101 Vehicle Routing Problem instance
from Solomon [37] with a genetic algorithm. The parameter settings of al-
gorithm and problem are listed in Table 5.7. The repetitions parameter was
set to 20 for this benchmark.

Figure 5.11 shows the results obtained from executing the Genetic Al-
gorithm in different runtime environments. Execution times of Mono with
the SGen garbage collector could not be measured, because it resulted in
reproducible crashes. The Mono team has already been made aware of this
issue.

Differences in execution time between Mono and .NET are very obvious
in this example. .NET outperforms Mono by 54.98 s (129.06 % faster) when
the algorithm is executed with the parallel engine and by 49.55 s (111.83 %
faster) with the sequential engine. This means a more than twofold increase
in execution time.

Execution times between parallel and sequential engine differ only min-
imally. Executing the algorithm with the sequential engine is 3.81 % faster

5. Case Study – HeuristicLab 3.3 66

Table 5.7: Parameter settings for Genetic Algorithm and VRP

Parameter Value

Capacity 200
Coordinates cf. C101 VRP Solomon [37]
Demand (C101)
DistanceMatrix (C101)
DueTime (C101)
EvalDistanceFactor 1
EvalFleetUsageFactor 100
EvalOverloadPenalty 100
EvalTardinessPenalty 100
EvalTimeFactor 0
Evaluator VRPEvaluator
ReadyTime (C101)
ServiceTime (C101)
SolutionCreator RandomCreator
UseDistanceMatrix True
Vehicles 25

SetSeedRandomly True
PopulationSize 100
Selector TournamentSelector
Crossover MultiVRPSolutionCrossover
MutationProbability 5 %
Mutator MultiVRPSolutionManipulator
Elites 1
Analyzer MultiAnalyzer
MaximumGenerations 1000

(3.72 s) under Mono, and 4.01 % slower (1.71 s) under .NET. The highest
execution times were recorded for Mono on Windows: 114.73 s and 120.95 s.

Genetic Programming – Symbolic Classification

A genetic programming algorithm was applied to tackle a symbolic clas-
sification problem. The problem dataset is available in the UCI Machine
Learning Repository23 and contains 961 rows of data from breast cancer
screenings, each row consisting of 6 columns (BI-Rads, Age, Shape, Margin,
Density, Severity).

23http://archive.ics.uci.edu/ml/datasets/Mammographic+Mass, UCI Machine Learning
Repository: Mammographic Mass Data Set

http://archive.ics.uci.edu/ml/datasets/Mammographic+Mass

5. Case Study – HeuristicLab 3.3 67

.N
ET

M
on

o

.N
ET

Seq
.

M
on

o
Seq

.

M
on

o
(W

in
dow

s)

M
on

o
(W

in
dow

s)
Seq

.

40

60

80

100

120

140

4
2
.6

9
7
.5

8

4
4
.3

1

9
3
.8

6

1
1
4
.7

3

1
2
0
.9

5

E
x
ec

u
ti

o
n

ti
m

e
[s

]

Figure 5.11: Execution times of Genetic Algorithm and “C101” Vehicle
Routing Problem

The parameter settings used for the algorithm and the problem are
printed in Table 5.8. The repetition parameter of the batch run was set
to 20 for this benchmark.

The results of the performance measurements of the symbolic classifica-
tion problem are shown in Figure 5.12. Recorded execution times of a single
configuration vary significantly for this type of algorithm: Relative standard
deviation ranges from 9 % to 16 %.

The box plot makes it immediately visible that it takes almost twice as
long (192.82 %) to classify the dataset with Mono as compared to .NET.
This is especially unfortunate, given that a single pass already takes close to
2 minutes with .NET (3.84 minutes with Mono). Execution under Mono on
Windows is even worse: One run takes 4.86 minutes with the parallel engine,
and 5.05 minutes with the sequential engine.

Performance under Mono can be improved slightly by selecting another
garbage collector (SGen instead of the default Boehm). Executing the algo-
rithm with the sequential engine generally slowed down execution. Lowest
execution times were achieved with the parallel engine and the SGen garbage
collector, with a median execution time of 220.76 seconds. Slowest was the
execution with the default garbage collector and the sequential engine, with a
median execution time of 251.72 seconds (excluding Mono on Windows). Us-

5. Case Study – HeuristicLab 3.3 68

Table 5.8: Parameter settings for a Genetic Programming algorithm and a
Symbolic Classification problem

Parameter Value

Evaluator Mean squared error Evaluator
FitnessCalculationPartition Start: 0, End: 400
MaximumSymbolicExpressionTreeDepth 10
MaximumSymbolicExpressionTreeLength 100
ProblemData mammographic masses.csv
RelativeNumberOfEvaluatedSamples 100 %
SolutionCreator ProbabilisticTreeCreator
SymbolicExpressionTreeGrammar TypeCoherentExpressionGrammar
ValidationPartition Start: 400, End: 800

SetSeedRandomly True
PopulationSize 1000
Selector TournamentSelector
Crossover SubtreeCrossover
MutationProbability 15 %
Mutator MultiSymbolicExpressionTreeManipulator
Elites 1
Analyzer MultiAnalyzer
MaximumGenerations 100

ing the sequential engine with .NET decreased the algorithm’s performance
by 22.39 s (18.67 % slower). This is the only algorithm-problem combination
where sequential execution was slower for all tested configurations (.NET,
Mono, Mono with SGen, and Mono on Windows).

5.7.2 Bottlenecks

The samples included with HeuristicLab showed worse performance of Mono
compared to .NET. To get an initial view of what code areas perform worse
in Mono, Mono can be started with the --profile=log:sample parameter24.
The profiler records statistical data periodically and enables developers to
generate a report that contains a list of methods sorted by their call fre-
quency. This gives a good overview of the amount of time an application
spends in each method during execution. Statistical profiling data was only
recorded under Mono on Linux.

The basis for profiling was a Genetic Algorithm solving the “ch130”
Travelling Salesman Problem from the previous section. The algorithm was
converted to a batch run with 10 repetitions. Execution times were recorded
for both garbage collectors (Boehm and SGen) and the parallel and sequen-
tial engine of HeuristicLab, totalling four different configurations. Each con-
figuration was run 5 times and its sample values summed up. The recorded

24http://www.mono-project.com/Profiler

http://www.mono-project.com/Profiler

5. Case Study – HeuristicLab 3.3 69

.N
ET

M
on

o
SG

en

.N
ET

Seq
.

M
on

o
Seq

.

SG
en

Seq
.

M
on

o
(W

in
dow

s)

M
on

o
(W

in
dow

s)
Seq

.

100

200

300
1
1
9
.9

4

2
3
0
.6

9

2
2
0
.7

6

1
4
2
.3

3

2
5
1
.7

2

2
4
4

2
9
1
.3

6

3
0
3
.1

9

E
x
ec

u
ti

on
ti

m
e

[s
]

Figure 5.12: Execution times of Genetic Programming and Symbolic Clas-
sification

values were normalized afterwards by subtracting the samples recorded while
loading HeuristicLab without executing the optimization algorithm.

The following observations were made (The HeuristicLab namespace has
been shortened to HL to improve readability):

� Boehm GC, Parallel Engine A lot of time is apparently spent in
methods of the garbage collector (25626 hits in GC_mark_from, 6071 hits
in GC_local_malloc, 5575 hits in GC_compare_and_exchange, and 2990
hits in GC_reclaim_clear) when running HeuristicLab under Mono
with the Boehm GC.

A large number of hits can also be observed for the method string

:GetHashCode(), ranking fourth with 3490 recorded hits. Several get-
ters for collections follow: 2491 hits in HL.Data.ValueTypeMatrix, 1804
hits in HL.Data.ValueTypeArray, and 1745 hits in System.Collections

.Generic.Dictionary.

Threading related methods and properties – such as System.Threading

.ThreadLocal:Value, pthread_mutex_trylock, pthread_mutex_unlock –
were hit between 616 and 991 times.

� Boehm GC, Sequential Engine Executing the algorithm with the
sequential engine lead to a similar result. Again, a large part of the time
seems to be spent in methods of the garbage collector, albeit the num-

5. Case Study – HeuristicLab 3.3 70

ber of hits was between 5 to 8 times lower (3272 hits in GC_mark_from,
1042 hits in GC_local_malloc, 802 hits in GC_compare_and_exchange).

string:GetHashCode() ranks fourth again, this time with recorded 630
hits. Collections come next as well: 526 hits in System.Collections

.Generic.Dictionary, 406 hits in HL.Data.ValueTypeMatrix, and 289
hits in HL.Data.ValueTypeArray.

Generally, most values were lower compared to the values recorded
with the parallel engine.

� SGen GC, Parallel Engine Using Mono’s SGen garbage collector
changes picture only somewhat. The largest number of hits still occurs
within the garbage collector (12091 hits in mono_g_hash_mark, 7791 hits
in add_profile_gcvroot.isra.18). A lot of new methods, related to the
SGen garbage collector, show up under the first ten places of the list.

string:GetHashCode() is still high up the list with 3491 hits. Collec-
tion methods and properties were recorded with 1289 hits in HL.Data

.ValueTypeMatrix, 1770 hits in HL.Data.ValueTypeArray, 1747 hits in
System.Collections.Generic.Dictionary.

Methods from the System.Threading namespace were sampled with
1040, 1019, and 933 hits.

� SGen GC, Sequential Engine Changing the parallel engine to the
sequential engine has similar effects with SGen as it did with Boehm.
Generally, fewer samples were recorded (around 6 times fewer hits).
mono_g_hash_mark has 2147 hits recorded, followed by 1397 hits in
add_profile_gc_root.isra.18.

Collection methods and string:GetHashCode() follow with 608, 508,
477, and 334 hits. Threading methods show up with 315, 237, 138,
and 134 hits.

Table 5.9 and Table 5.10 list the top methods for the Boehm and the
SGen GC, respectively. Again, HeuristicLab was replaced by HL to save
horizontal space. Methods are sorted descending by number of hits recorded
with the parallel engine.

5.7.3 Result Summary

This section summarizes the results from the previous sections. Table 5.11
lists all obtained results for easy comparison. The table shows the median
execution times in seconds for each algorithm-problem combination and the
environment it was run in. Values are rounded to two decimal places. Lower
execution times correlate to better performance. If an algorithm could not
be tested in the environment, an em-dash (“—”) is listed instead.

The benchmarks and performance analysis results of this section clearly
showed that Mono lags behind .NET regarding performance, when executing
optimization algorithms of the HeuristicLab framework. Execution times

5. Case Study – HeuristicLab 3.3 71

Table 5.9: Profiling data recorded under Mono with Boehm GC

Hits/engine
Parallel Seq. Method

25626 3272 GC_mark_from

6071 1042 GC_local_malloc

5575 802 GC_compare_and_exchange

3490 630 string:GetHashCode()

2990 507 GC_reclaim_clear

2491 406 HL.Data.ValueTypeMatrix<double>:get_Item(int,int)

2011 358 GC_build_fl

1804 289 HL.Data.ValueTypeArray<int>:get_Item(int)

1745 526 System.Collections.Generic.Dictionary:get_Item(TKey)

1715 283 mono_object_new_specific

1337 394 System.Collections.Generic.Dictionary:ContainsKey(TKey)

1328 225 HL.Encodings.PermutationEncoding.OrderCrossover2:Apply(...)

1185 231 (wrapper) object:virt_stelemref_interface(intptr,object)

1185 235 mono_object_new_alloc_specific

991 302 System.Threading.ThreadLocal:get_Value()

Table 5.10: Profiling data recorded under Mono with SGen GC

Hits/engine
Parallel Seq. Method

12091 2147 mono_g_hash_mark

7791 1397 add_profile_gc_root.isra.18

6287 1054 /lib/x86_64-linux-gnu/libc.so.6

4114 676 encode_sleb128

3491 608 string:GetHashCode()

2583 429 write

2524 358 serial_copy_object

2189 477 HL.Data.ValueTypeMatrix`1<double>:get_Item(int,int)

2163 369 encode_uleb128

2120 254 serial_scan_object

2076 393 ms_sweep

2007 323 mono_gc_memmove

1868 347 alloc_obj

1770 334 HL.Data.ValueTypeArray`1<int>:get_Item(int)

1747 508 System.Collections.Generic.Dictionary`2:get_Item(TKey)

under Mono with default settings range between 122 % and 299 % compared
to execution times under .NET, for the seven benchmarks examined.

Execution times change when choosing another garbage collector under
Mono (SGen instead of the default Boehm GC). The SGen garbage col-
lector generally improved performance under Mono slightly (≈ 7 %); only
the Traveling Salesman Problem optimized by an Tabu Search algorithm

5. Case Study – HeuristicLab 3.3 72

Table 5.11: Median Execution Times of Different Algorithm Classes and
Problem Instances in Seconds

T
S

P
,

G
en

et
ic

A
lg

or
it

h
m

T
S

P
,

T
ab

u
S

ea
rc

h

V
R

P
,

G
en

et
ic

A
lg

or
it

h
m

P
a
rt

ic
le

S
w

a
rm

O
p

ti
m

iz
a
ti

on

S
im

u
la

te
d

A
n

n
ea

li
n

g

Q
A

P
,

E
vo

lu
ti

o
n

S
tr

at
eg

y

G
en

et
ic

P
ro

gr
a
m

m
in

g

.NET 5.36 18.28 42.60 1.81 1.69 2.61 119.94

.NET Seq. 5.66 28.35 44.61 1.88 1.70 3.04 142.33
Mono 12.39 45.05 97.58 3.73 2.21 7.81 230.69
Mono Seq. 9.46 40.15 93.86 2.46 2.26 5.52 251.72
Mono SGen 11.54 50.96 — — 1.95 7.32 220.76
Mono SGen Seq. 9.02 44.35 — — 1.96 4.59 244.00
Mono (Windows) 12.34 53.06 114.73 3.29 2.92 6.60 291.36
Mono (Windows) Seq. 11.26 48.68 120.95 2.93 2.95 6.34 303.19

incurred a slight performance hit (50.96 s compared to 45.05 s, which equals
an increase in execution time by 13.12 %).

Unfortunately, SGen cannot be used for all algorithms. The Genetic Al-
gorithm solving a Vehicle Routing Problem and the Particle Swarm Opti-
mization algorithm for the Schwefel test function are crashing when executed
under Mono with SGen. This should get fixed in future versions of Mono,
when SGen becomes more mature and stable.

On average, algorithms executed under Mono execute longer by 119.3 %
(median: 129.1 %). When considering only the fastest configurations under
Mono (GC, Parallel vs. Sequential Engine), execution times are still higher
by 74.21 % on average (median: 75.9 %). Even then, a relative difference of
execution times as high as 120.3 % can be observed for the Genetic Algo-
rithm and VRP benchmark; the lowest relative difference was achieved in
the Simulated Annealing benchmark (15.38 % slower). Especially for perfor-
mance critical applications such as HeuristicLab this is a problem.

Mono on Windows has comparable performance metrics to Mono on
Linux. It is significantly slower in the Simulated Annealing benchmark (0.71 s
or 32.12 % longer execution times) and in the Genetic Programming bench-
mark (60.67 s or 26.3 % longer execution times). Performance gains when ex-
ecuting algorithms with the sequential engine of HeuristicLab on Windows
were not as high, as compared to executing algorithms with the sequential
engine under Mono on Linux. Here, Mono on Linux outperformed Mono

5. Case Study – HeuristicLab 3.3 73

on Windows for all benchmarks. Unfortunately, it was not possible to test
HeuristicLab with SGen under Mono on the Windows operating system, due
to crashes during startup (Error message: “Windows systems haven’t been
ported to support mono_thread_state_init_from_handle”).

When executing algorithms under Mono with the sequential engine, ex-
ecution times were generally lower for all benchmarks, with the exception
of Genetic Algorithm solving a Vehicle Routing Problem under Mono on
Windows (5.14 % slower). Under .NET, the opposite was the case: execu-
tion times with the sequential engine were higher for all benchmarks, as
expected. For the Tabu Search with TSP benchmark, the algorithm finished
faster by 55.09 % with the parallel engine. Genetic Programming was always
faster when executed with the parallel engine of HeuristicLab (18.7 % faster
under .NET, ≈ 10 % faster under Mono on Linux, and 4.1 % under Mono
on Windows).

On average, the biggest difference in execution times between parallel
and sequential engine was achieved when using the Boehm garbage collector
(20.34 % faster), closely followed by SGen (18.03 % faster). The biggest rela-
tive jump could be observed for the Evolution Strategy solving a Quadratic
Assignment Problem. When using the SGen garbage collector, performance
could be increased by 37.3 % with the sequential engine. On Windows, per-
formance was better for all tested algorithms when using the parallel engine.
Execution times were lower by 11.36 % on average (median: 5.3 %) compared
to the execution times with the sequential engine. This leads to think that
heavy usage of threads incurs quite some overhead under Mono, especially
on Linux systems.

A project that aims to improve the performance of native code is the
integration of LLVM25 into Mono’s JIT compiler26. LLVM is able perform
additional optimization on generated native code, before it is executed by
the CPU. These optimizations trade off longer compilation times and higher
memory consumption for more optimized native code.

25http://llvm.org/, The LLVM Compiler Infrastructure Project
26http://www.mono-project.com/Mono:Runtime:Documentation:LLVM

http://llvm.org/
http://www.mono-project.com/Mono:Runtime:Documentation:LLVM

Chapter 6

Outlook and Conclusion

This final chapter summarizes the identified problem areas of the previously
analyzed components. Developers should take these into account when de-
veloping applications for the .NET Framework, if they plan to make these
applications available for other platforms too.

Mono is a mature platform and a compliant implementation of the Com-
mon Language Infrastructure (ISO/IEC 23271 and ECMA-335). It provides
a solid base for developing and running applications on a number of different
operating systems, such as Linux, Windows, and Mac OS.

However, developers cannot expect to compile and run a project tar-
geting .NET without modifications under Mono. While the core libraries
described by the CLI standard (found in the namespace System) are im-
plemented and well supported, third party libraries and vendor specific ex-
tensions make migration of applications more difficult. Especially newer li-
braries, such as WPF or WCF, are often missing in Mono or not implemented
completely.

When starting a new project, it is important to evaluate solutions also
based on their compatibility with different implementations of the CLI.
Many solutions and libraries exist that work with .NET as well as with
Mono. This improves cross-platform compatibility drastically from the start
and lessens the effort necessary to port an application.

Another approach is to start new projects in the Mono environment.
This way only classes and functionality that is present in Mono can be used.
Mono can be used on several operating systems and most parts of Mono
are a subset of Microsoft .NET, which means it is more likely that Mono
applications run in the .NET runtime than the other way round.

One potential problem source is the choice of the GUI framework. The
standard does not specify how GUI frameworks should be implemented and
what functionality they must provide. Thus, several different GUI frame-
works exist which are provided by third parties. Popular choices include
Windows Forms, Windows Presentation Foundation, MonoMac, GTK# and

74

6. Outlook and Conclusion 75

Qyoto (Qt/KDE). Developers planning to run their applications on different
operating systems should either choose Windows Forms (of which Mono pro-
vides an implementation) or better, use one of the frameworks that are not
restricted to a single platform (GTK#, Qyoto)1. Of course, it is still possible
to provide different graphical front ends for different operating systems, but
this increases the required coding effort and maintenance costs immensely.

The Common Language Infrastructure specifies ways to call native func-
tions from system libraries (DLLs, shared object files, or .dylib files) from
managed code with P/Invoke. Using this mechanism creates a direct depen-
dence on the underlying operating system. Although the Mono runtime is
able to choose the correct library depending on the operating system, rely-
ing on P/Invoke in a cross-platform landscape generally leads to problems
or high maintenance costs sooner or later.

But even though Mono provides a multitude of class libraries and does its
best to provide a CLI implementation that closely matches .NET, not every
project can be ported with affordable costs and adequate effort. Existing,
large scale projects might have accumulated dependencies on the underlying
operating system or the concrete implementation of the CLI. GUI intensive
applications with strong coupling between the business logic back end and
the graphical front end are also difficult to port, if the front end libraries
are not available on other operating systems. Given that it requires a lot
of developer effort to properly separate and abstract the graphical front
end from the back end, it is often not easily possible to exchange the GUI
framework.

Mono developers implement amendments to the CLI or C# standards
fairly quick. For instance, the keywords async and await of the upcoming
C# version have already been added to Mono’s compiler. Existing bugs are
fixed on a daily basis and missing features will be added over time. Develop-
ment around Mono will definitely remain exciting. Just recently, Xamarin,
the company behind Mono, raised $ 12 million in venture capital to boost
development. Xamarin also puts a strong emphasis on development of mo-
bile apps, providing Mono for mobile devices (MonoTouch for iOS, Mono
for Android).

All in all, Mono is and is going to be one of the best alternatives to Mi-
crosoft’s .NET Framework when working in a managed environment based
on the Common Language Infrastructure, which is not only intended to run
on the Windows operating system, but also on Linux, Mac OS, and mobile
devices.

1http://www.mono-project.com/Gui Toolkits

http://www.mono-project.com/Gui_Toolkits

6. Outlook and Conclusion 76

6.1 Status and Future of HeuristicLab for Mono

This section briefly summarizes the work done to create a first prototype of
HeuristicLab which can be compiled and executed with tools provided by
Mono on Linux. Possible future developments of HeuristicLab to increase
cross-platform compatibility are highlighted.

As the previous chapters have shown, it is possible to use Mono as re-
placement for .NET in the HeuristicLab project. Not all components have
been ported, but the core functionality is working under Mono and Linux,
apart from some minor annoyances. Also, some runtime bugs will have yet
to be discovered by extensive usage and testing.

The current proof-of-concept prototype of HeuristicLab enables users
to use HeuristicLab on different operating systems to design and run algo-
rithms, and to store and retrieve algorithm and problem files. Result data
can be analyzed and visualized by different means, including a table view
and several interactive charts, such as bubble charts or box plots.

For developers, HeuristicLab now provides additional solution files to be
used with MonoDevelop. These solution files include test projects to be used
with the NUnit unit testing framework. The supplied shell scripts allow easy
and automated deployment of HeuristicLab libraries.

Currently missing features and problems include some incomplete imple-
mentation details of the Windows Forms GUI framework and the missing
Hive component of HeuristicLab (due to wsHttp*-bindings). WCF could be
replaced with the ServiceStack project in future releases of HeuristicLab, if
it proves to be a viable replacement.

Source code that originated as part of Chapter 5 can be found in the
HeuristicLab Subversion repository. It is tracked in its own branch2 for every-
one to browse and inspect. Interested parties are welcomed and encouraged
to file bug reports and send patches to further improve HeuristicLab’s com-
patibility with the Mono project. Furthermore, creating the proof-of-concept
prototype of HeuristicLab resulted in mutual benefits for both projects. Sev-
eral bugs were discovered in the Mono runtime, as well as the Mono compiler.
Most of them were already fixed in the Mono source code repository.

One big disadvantage of running HeuristicLab inside the Mono runtime
environment is the performance impact incurred. Runtime tests performed
in Section 5.7 showed higher execution times of up to 300 % for sample files
that are included with HeuristicLab. Taking into account only the lowest
execution times that were recorded under Mono, execution times were still
higher by 73.6 % on average. Differences in execution times might diminish
in the future with improvements being made to Mono’s JIT compiler or by
integrating LLVM.

2http://dev.heuristiclab.com/svn/hl/core/branches/HeuristicLab.Mono/

http://dev.heuristiclab.com/svn/hl/core/branches/HeuristicLab.Mono/

6. Outlook and Conclusion 77

This thesis has laid a solid groundwork – leaving aside the worse per-
formance – for HeuristicLab to be executed under and developed with the
Mono project. The HeuristicLab team will hopefully continue this effort
and make HeuristicLab more compatible with the Mono project to ensure a
wider outreach across many operating systems and platforms. Considering
the open-source nature of HeuristicLab, this is only the next logical step to
take.

List of Figures

2.1 Common Type System . 6
2.2 CIL Validation and Verification 7
2.3 Two Step Compilation Model 8
2.4 CLI Libraries and Profiles . 9

3.1 Screenshot of Microsoft Visual Studio 2010 Premium Edition 15
3.2 Screenshot of SharpDevelop 4.2 16
3.3 The MonoDevelop Integrated Development Environment . . . 20

4.1 ZedGraph (left) vs. Microsoft Chart Controls (right) 29
4.2 NUnit Test Pane inside MonoDevelop 35

5.1 Screenshot of the HeuristicLab 3.3.6 Optimizer under .NET . 38
5.2 Architectural overview of HL 3.3 41
5.3 Windows.Forms.DataVisualization under Mono 48
5.4 Execution times of Genetic Algorithm and “ch130” TSP . . . 58
5.5 Execution times of Tabu Search and “ch130” TSP 59
5.6 Execution times of ES and “chr12a” QAP 61
5.7 The 2-dimensional Schwefel test function 61
5.8 Execution times of PSO and Schwefel function 63
5.9 The 2-dimensional Rastrigin test function 63
5.10 Execution times of Simulated Annealing and Rastrigin function 65
5.11 Execution times of Genetic Algorithm and “C101” VRP . . . 67
5.12 Execution times of Symbolic Classification 69

78

List of Tables

5.1 Benchmark results . 56
5.2 Parameter settings for GA and TSP 57
5.3 Parameter settings for Tabu Search and TSP 58
5.4 Parameter settings for ES and QAP 60
5.5 Parameter settings for PSO and Schwefel function 62
5.6 Parameter settings for SA and Rastrigin function 64
5.7 Parameter settings for Genetic Algorithm and VRP 66
5.8 Parameter settings for GP and Symbolic Classification 68
5.9 Profiling data recorded under Mono with Boehm GC 71
5.10 Profiling data recorded under Mono with SGen GC 71
5.11 Median Execution Times of Algorithms and Problems 72

79

Listings

2.1 C# Source Code Sample . 10
2.2 Hello World with Visual Basic.NET 10
2.3 Hello World with Managed Extensions for C++ 11
2.4 Recursive Definition of the Fibonacci Number Function in F# 11
4.1 WCF Endpoint Configuration 25
4.2 Simple XAML Document . 27
4.3 Simple NAnt Build Script . 34
4.4 Replacing MSTest Attributes with their NUnit Counterpart . 35
5.1 ObjectEqualityComparer implementation 50
5.2 Type loading during deserialization 51

80

Bibliography

[1] M. Affenzeller, S. Winkler, S. Wagner, and A. Beham. Genetic algo-
rithms and genetic programming: modern concepts and practical appli-
cations, volume 6. Chapman & Hall/CRC, 2009.

[2] T. Archer and A. Whitechapel. Inside C#. Microsoft Press, 2001.

[3] A. Beham, M. Affenzeller, S. Wagner, and G. Kronberger. Simulation
optimization with HeuristicLab. Proceedings of the 20th European Mod-
eling and Simulation Symposium (EMSS2008), pages 75–80, 2008.

[4] H. J. Boehm and M. Weiser. Garbage collection in an uncooperative
environment. Software: Practice and Experience, 18(9):807–820, 1988.

[5] R. E. Burkard, S. Karisch, and F. Rendl. QAPLIB – a quadratic as-
signment problem library. European Journal of Operational Research,
55(1):115–119, 1991.

[6] H. J. Curnow and B. A. Wichmann. A synthetic benchmark. The
Computer Journal, 19(1):43–49, 1976.

[7] M. de Icaza. Miguel de Icaza’s blog, http://tirania.org/blog.

[8] J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart. LIN-
PACK: users’ guide. Society for Industrial Mathematics, 1979.

[9] E. Dumbill and N. M. Bornstein. Mono: A Developer’s Notebook.
O’Reilly Media, first edition, July 2004.

[10] M. J. Easton and J. King. Cross-Platform .NET Development: Us-
ing Mono, Portable .NET, and Microsoft .NET. A-Press, first edition,
September 2004.

[11] Ecma International. ECMA-335: Common Language Infrastructure
(CLI). ECMA (European Association for Standardizing Information
and Communication Systems), Geneva, Switzerland, 2002.

[12] Ecma International. Standard ECMA-334: C# language specification,
2005.

81

http://tirania.org/blog

Bibliography 82

[13] M. M. Flood. The traveling-salesman problem. Operations Research,
4(1):61–75, 1956.

[14] E. Geschwinde. Mono – .NET-kompatible Anwendungen mit dem Open
Source-Framework. Markt+Technik, 2003.

[15] J. Gough. Compiling for the .NET Common Language Runtime (CLR).
Prentice Hall, first edition, November 2001.

[16] C. Holm, B. Spuida, and M. Krüger. Dissecting a C# Application: Inside
SharpDevelop. Wrox Press, first edition, January 2003.

[17] A. Hunt and D. Thomas. Pragmatic Unit Testing in C# with NUnit
(Pragmatic Programmers). The Pragmatic Programmers, first edition,
May 2004.

[18] ISO. ISO/IEC 23271:2003: Information technology — Common Lan-
guage Infrastructure. International Organization for Standardization,
Geneva, Switzerland, 2003.

[19] ISO. ISO/IEC 23270:2006: Information technology — Programming
languages — C#. Technical report. International Organization for Stan-
dardization, Geneva, Switzerland, 2006.

[20] ISO. ISO/IEC 23271:2012: Information technology — Common Lan-
guage Infrastructure. International Organization for Standardization,
Geneva, Switzerland, 2012.

[21] C. Kaan. Mono – .NET goes LINUX. Franzis Verlag GmbH, December
2007.

[22] T. C. Koopmans and M. Beckmann. Assignment problems and the loca-
tion of economic activities. Econometrica: Journal of the Econometric
Society, pages 53–76, 1957.

[23] E. L. Lawler, A. H. G. R. Kan, J. K. Lenstra, and D. B. Shmoys.
The Traveling Salesman Problem – A Guided Tour of Combinatorial
Optimization. Wiley-Interscience series in discrete mathematics and
optimization. Wiley, 1985.

[24] J. Levinson. Software Testing with Visual Studio 2010. Microsoft .NET
Development Series. Addison-Wesley Professional, first edition, March
2011.

[25] L. A. MacVittie. XAML in a Nutshell. O’Reilly Media, first edition,
April 2006.

[26] M. Mamone. Practical Mono (Expert’s Voice in Open Source). Apress,
first edition, December 2005.

Bibliography 83

[27] M. Molga and C. Smutnicki. Test functions for optimization needs. Test
functions for optimization needs, 2005.

[28] A. Nathan. Windows Presentation Foundation Unleashed (WPF).
Sams, first edition, December 2006.

[29] C. Neumüller, A. Scheibenpflug, S. Wagner, A. Beham, and M. Af-
fenzeller. Large scale parameter meta-optimization of metaheuristic
optimization algorithms with HeuristicLab Hive.

[30] J. A. Parejo, A. Ruiz-Cortés, S. Lozano, and P. Fernandez. Metaheuris-
tic optimization frameworks: a survey and benchmarking. Soft Comput-
ing – A Fusion of Foundations, Methodologies and Applications, pages
1–35, 2012.

[31] D. S. Platt. Introducing Microsoft .NET. Microsoft Press, 2001.

[32] G. Reinelt. TSPLIB 95 documentation. University of Heidelberg, 1995.

[33] H. J. Schönig and E. Geschwinde. Mono kick start. Kick Start Series.
Sams, 2003.

[34] C. Sells and I. Griffiths. Programming Windows Presentation Founda-
tion. O’Reilly Media, September 2005.

[35] C. Sells and M. Weinhardt. Windows Forms 2.0 Programming. Mi-
crosoft .NET Development Series. Addison-Wesley Professional, second
edition, May 2006.

[36] J. Sharp. Windows Communication Foundation 4 Step by Step (Step
by Step (Microsoft)). Microsoft Press, first edition, November 2010.

[37] M. M. Solomon. Algorithms for the vehicle routing and scheduling prob-
lems with time window constraints. Operations Research, 35(2):254–
265, 1987.

[38] S. Wagner. Heuristic Optimization Software Systems – Modeling of
Heuristic Optimization Algorithms in the HeuristicLab Software Envi-
ronment. PhD thesis, Institute for Formal Models and Verification,
Johannes Kepler University, Linz, Austria, 2009.

[39] S. Wagner and M. Affenzeller. The HeuristicLab optimization envi-
ronment. Institute of Formal Models and Verification Johannes Kepler
University Linz, Austria, 2004.

[40] S. Wagner, G. Kronberger, A. Beham, S. Winkler, and M. Affenzeller.
Modeling of heuristic optimization algorithms. In Proceedings of the
20th European Modeling and Simulation Symposium, pages 106–111,
2008.

Bibliography 84

[41] R. P. Weicker. Dhrystone: a synthetic systems programming bench-
mark. Communications of the ACM, 27(10):1013–1030, 1984.

	Declaration
	Abstract
	Kurzfassung
	Introduction
	Motivation
	Goals
	Content

	Common Language Infrastructure (CLI)
	Common Type System (CTS)
	Metadata
	Common Language Specification (CLS)
	Virtual Execution System (VES)
	Common Intermediate Language (CIL)
	Profiles
	Supported Languages
	C#
	Visual Basic.NET
	Managed Extensions for C++
	F#
	Other Supported Languages

	CLI Implementations – .NET and Mono
	.NET
	Version History of .NET
	Visual Studio
	SharpDevelop

	Mono
	Compiler
	Runtime
	Libraries
	MonoDevelop

	Other Implementations
	Microsoft .NET Compact Framework
	DotGNU Portable.NET
	Open CLI Library
	Shared Source CLI

	Shortcomings and Incompatibilities
	Mono Migration Analyzer (MoMA)
	Windows Communication Foundation
	Windows Presentation Foundation
	XAML

	Windows Workflow Foundation
	Windows Forms
	Charting

	Windows Registry
	Security
	Platform Invoke
	Case Sensitive File Systems
	Compiling Files and Building Projects
	Unit Tests
	Internals

	Case Study – HeuristicLab 3.3
	About HeuristicLab
	Architecture
	External Libraries

	Required Packages
	Building Mono

	MoMA Report
	Necessary Changes
	Fixing Platform Dependencies
	Missing Charting Library
	Unit Tests
	Persistence Layer

	Remaining Issues and Future Tasks
	ZedGraph Charting Library
	HeuristicLab Hive
	Windows Forms

	Performance Analysis
	Results
	Bottlenecks
	Result Summary

	Outlook and Conclusion
	Status and Future of HeuristicLab for Mono

